Step |
Hyp |
Ref |
Expression |
1 |
|
krullndrng.1 |
|- .0. = ( 0g ` R ) |
2 |
|
krullndrng.2 |
|- ( ph -> R e. NzRing ) |
3 |
|
krullndrng.3 |
|- ( ph -> -. R e. DivRing ) |
4 |
|
krull |
|- ( R e. NzRing -> E. n n e. ( MaxIdeal ` R ) ) |
5 |
2 4
|
syl |
|- ( ph -> E. n n e. ( MaxIdeal ` R ) ) |
6 |
|
simpr |
|- ( ( ph /\ n e. ( MaxIdeal ` R ) ) -> n e. ( MaxIdeal ` R ) ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( MaxIdeal ` R ) = ( MaxIdeal ` R ) |
9 |
2
|
adantr |
|- ( ( ph /\ ( MaxIdeal ` R ) = { { .0. } } ) -> R e. NzRing ) |
10 |
|
simpr |
|- ( ( ph /\ ( MaxIdeal ` R ) = { { .0. } } ) -> ( MaxIdeal ` R ) = { { .0. } } ) |
11 |
7 1 8 9 10
|
drngmxidlr |
|- ( ( ph /\ ( MaxIdeal ` R ) = { { .0. } } ) -> R e. DivRing ) |
12 |
3 11
|
mtand |
|- ( ph -> -. ( MaxIdeal ` R ) = { { .0. } } ) |
13 |
12
|
neqned |
|- ( ph -> ( MaxIdeal ` R ) =/= { { .0. } } ) |
14 |
13
|
adantr |
|- ( ( ph /\ n e. ( MaxIdeal ` R ) ) -> ( MaxIdeal ` R ) =/= { { .0. } } ) |
15 |
|
n0nsnel |
|- ( ( n e. ( MaxIdeal ` R ) /\ ( MaxIdeal ` R ) =/= { { .0. } } ) -> E. m e. ( MaxIdeal ` R ) m =/= { .0. } ) |
16 |
6 14 15
|
syl2anc |
|- ( ( ph /\ n e. ( MaxIdeal ` R ) ) -> E. m e. ( MaxIdeal ` R ) m =/= { .0. } ) |
17 |
5 16
|
exlimddv |
|- ( ph -> E. m e. ( MaxIdeal ` R ) m =/= { .0. } ) |