Metamath Proof Explorer


Theorem krullndrng

Description: Krull's theorem for non-division-rings: Existence of a nonzero maximal ideal. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses krullndrng.1 0 ˙ = 0 R
krullndrng.2 φ R NzRing
krullndrng.3 φ ¬ R DivRing
Assertion krullndrng φ m MaxIdeal R m 0 ˙

Proof

Step Hyp Ref Expression
1 krullndrng.1 0 ˙ = 0 R
2 krullndrng.2 φ R NzRing
3 krullndrng.3 φ ¬ R DivRing
4 krull R NzRing n n MaxIdeal R
5 2 4 syl φ n n MaxIdeal R
6 simpr φ n MaxIdeal R n MaxIdeal R
7 eqid Base R = Base R
8 eqid MaxIdeal R = MaxIdeal R
9 2 adantr φ MaxIdeal R = 0 ˙ R NzRing
10 simpr φ MaxIdeal R = 0 ˙ MaxIdeal R = 0 ˙
11 7 1 8 9 10 drngmxidlr φ MaxIdeal R = 0 ˙ R DivRing
12 3 11 mtand φ ¬ MaxIdeal R = 0 ˙
13 12 neqned φ MaxIdeal R 0 ˙
14 13 adantr φ n MaxIdeal R MaxIdeal R 0 ˙
15 n0nsnel n MaxIdeal R MaxIdeal R 0 ˙ m MaxIdeal R m 0 ˙
16 6 14 15 syl2anc φ n MaxIdeal R m MaxIdeal R m 0 ˙
17 5 16 exlimddv φ m MaxIdeal R m 0 ˙