Metamath Proof Explorer


Theorem n0nsnel

Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025) (Revised by Thierry Arnoux, 28-May-2025)

Ref Expression
Assertion n0nsnel ( ( 𝐶𝐵𝐵 ≠ { 𝐴 } ) → ∃ 𝑥𝐵 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐶𝐵𝐵 ≠ ∅ )
2 eqsn ( 𝐵 ≠ ∅ → ( 𝐵 = { 𝐴 } ↔ ∀ 𝑥𝐵 𝑥 = 𝐴 ) )
3 1 2 syl ( 𝐶𝐵 → ( 𝐵 = { 𝐴 } ↔ ∀ 𝑥𝐵 𝑥 = 𝐴 ) )
4 3 biimprd ( 𝐶𝐵 → ( ∀ 𝑥𝐵 𝑥 = 𝐴𝐵 = { 𝐴 } ) )
5 4 con3d ( 𝐶𝐵 → ( ¬ 𝐵 = { 𝐴 } → ¬ ∀ 𝑥𝐵 𝑥 = 𝐴 ) )
6 df-ne ( 𝐵 ≠ { 𝐴 } ↔ ¬ 𝐵 = { 𝐴 } )
7 nne ( ¬ 𝑥𝐴𝑥 = 𝐴 )
8 7 bicomi ( 𝑥 = 𝐴 ↔ ¬ 𝑥𝐴 )
9 8 ralbii ( ∀ 𝑥𝐵 𝑥 = 𝐴 ↔ ∀ 𝑥𝐵 ¬ 𝑥𝐴 )
10 ralnex ( ∀ 𝑥𝐵 ¬ 𝑥𝐴 ↔ ¬ ∃ 𝑥𝐵 𝑥𝐴 )
11 9 10 bitri ( ∀ 𝑥𝐵 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥𝐵 𝑥𝐴 )
12 11 con2bii ( ∃ 𝑥𝐵 𝑥𝐴 ↔ ¬ ∀ 𝑥𝐵 𝑥 = 𝐴 )
13 5 6 12 3imtr4g ( 𝐶𝐵 → ( 𝐵 ≠ { 𝐴 } → ∃ 𝑥𝐵 𝑥𝐴 ) )
14 13 imp ( ( 𝐶𝐵𝐵 ≠ { 𝐴 } ) → ∃ 𝑥𝐵 𝑥𝐴 )