Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
⊢ ( 𝐶 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
2 |
|
eqsn |
⊢ ( 𝐵 ≠ ∅ → ( 𝐵 = { 𝐴 } ↔ ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐵 = { 𝐴 } ↔ ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) ) |
4 |
3
|
biimprd |
⊢ ( 𝐶 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝐵 = { 𝐴 } ) ) |
5 |
4
|
con3d |
⊢ ( 𝐶 ∈ 𝐵 → ( ¬ 𝐵 = { 𝐴 } → ¬ ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) ) |
6 |
|
df-ne |
⊢ ( 𝐵 ≠ { 𝐴 } ↔ ¬ 𝐵 = { 𝐴 } ) |
7 |
|
nne |
⊢ ( ¬ 𝑥 ≠ 𝐴 ↔ 𝑥 = 𝐴 ) |
8 |
7
|
bicomi |
⊢ ( 𝑥 = 𝐴 ↔ ¬ 𝑥 ≠ 𝐴 ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴 ) |
10 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ) |
11 |
9 10
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ) |
12 |
11
|
con2bii |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ ∀ 𝑥 ∈ 𝐵 𝑥 = 𝐴 ) |
13 |
5 6 12
|
3imtr4g |
⊢ ( 𝐶 ∈ 𝐵 → ( 𝐵 ≠ { 𝐴 } → ∃ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐵 ≠ { 𝐴 } ) → ∃ 𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ) |