Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|- B = ( Base ` R ) |
2 |
|
1arithufd.0 |
|- .0. = ( 0g ` R ) |
3 |
|
1arithufd.u |
|- U = ( Unit ` R ) |
4 |
|
1arithufd.p |
|- P = ( RPrime ` R ) |
5 |
|
1arithufd.m |
|- M = ( mulGrp ` R ) |
6 |
|
1arithufd.r |
|- ( ph -> R e. UFD ) |
7 |
|
1arithufdlem.2 |
|- ( ph -> -. R e. DivRing ) |
8 |
|
1arithufdlem.s |
|- S = { x e. B | E. f e. Word P x = ( M gsum f ) } |
9 |
|
eqeq1 |
|- ( x = p -> ( x = ( M gsum f ) <-> p = ( M gsum f ) ) ) |
10 |
9
|
rexbidv |
|- ( x = p -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P p = ( M gsum f ) ) ) |
11 |
6
|
ad2antrr |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> R e. UFD ) |
12 |
11
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> R e. UFD ) |
13 |
|
simplr |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> p e. P ) |
14 |
1 4 12 13
|
rprmcl |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> p e. B ) |
15 |
|
oveq2 |
|- ( f = <" p "> -> ( M gsum f ) = ( M gsum <" p "> ) ) |
16 |
15
|
eqeq2d |
|- ( f = <" p "> -> ( p = ( M gsum f ) <-> p = ( M gsum <" p "> ) ) ) |
17 |
13
|
s1cld |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> <" p "> e. Word P ) |
18 |
5 1
|
mgpbas |
|- B = ( Base ` M ) |
19 |
18
|
gsumws1 |
|- ( p e. B -> ( M gsum <" p "> ) = p ) |
20 |
14 19
|
syl |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> ( M gsum <" p "> ) = p ) |
21 |
20
|
eqcomd |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> p = ( M gsum <" p "> ) ) |
22 |
16 17 21
|
rspcedvdw |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> E. f e. Word P p = ( M gsum f ) ) |
23 |
10 14 22
|
elrabd |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> p e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
24 |
23 8
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> p e. S ) |
25 |
24
|
ne0d |
|- ( ( ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) /\ p e. P ) /\ p e. m ) -> S =/= (/) ) |
26 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
27 |
6
|
ufdidom |
|- ( ph -> R e. IDomn ) |
28 |
27
|
idomcringd |
|- ( ph -> R e. CRing ) |
29 |
28
|
ad2antrr |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> R e. CRing ) |
30 |
|
simplr |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> m e. ( MaxIdeal ` R ) ) |
31 |
|
eqid |
|- ( LSSum ` ( mulGrp ` R ) ) = ( LSSum ` ( mulGrp ` R ) ) |
32 |
31
|
mxidlprm |
|- ( ( R e. CRing /\ m e. ( MaxIdeal ` R ) ) -> m e. ( PrmIdeal ` R ) ) |
33 |
29 30 32
|
syl2anc |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> m e. ( PrmIdeal ` R ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> m =/= { .0. } ) |
35 |
26 4 2 11 33 34
|
ufdprmidl |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> E. p e. P p e. m ) |
36 |
25 35
|
r19.29a |
|- ( ( ( ph /\ m e. ( MaxIdeal ` R ) ) /\ m =/= { .0. } ) -> S =/= (/) ) |
37 |
27
|
idomdomd |
|- ( ph -> R e. Domn ) |
38 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
39 |
37 38
|
syl |
|- ( ph -> R e. NzRing ) |
40 |
2 39 7
|
krullndrng |
|- ( ph -> E. m e. ( MaxIdeal ` R ) m =/= { .0. } ) |
41 |
36 40
|
r19.29a |
|- ( ph -> S =/= (/) ) |