| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 3 |
1 2
|
umgrpredgv |
|- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> ( N e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 4 |
3
|
simpld |
|- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> N e. ( Vtx ` G ) ) |
| 5 |
|
eqid |
|- N = N |
| 6 |
2
|
umgredgne |
|- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> N =/= N ) |
| 7 |
|
eqneqall |
|- ( N = N -> ( N =/= N -> -. N e. ( Vtx ` G ) ) ) |
| 8 |
5 6 7
|
mpsyl |
|- ( ( G e. UMGraph /\ { N , N } e. ( Edg ` G ) ) -> -. N e. ( Vtx ` G ) ) |
| 9 |
4 8
|
pm2.65da |
|- ( G e. UMGraph -> -. { N , N } e. ( Edg ` G ) ) |
| 10 |
|
df-nel |
|- ( { N , N } e/ ( Edg ` G ) <-> -. { N , N } e. ( Edg ` G ) ) |
| 11 |
9 10
|
sylibr |
|- ( G e. UMGraph -> { N , N } e/ ( Edg ` G ) ) |