Metamath Proof Explorer


Theorem untelirr

Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 ). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011)

Ref Expression
Assertion untelirr
|- ( A. x e. A -. x e. x -> -. A e. A )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( x = A -> ( x e. x <-> A e. x ) )
2 eleq2
 |-  ( x = A -> ( A e. x <-> A e. A ) )
3 1 2 bitrd
 |-  ( x = A -> ( x e. x <-> A e. A ) )
4 3 notbid
 |-  ( x = A -> ( -. x e. x <-> -. A e. A ) )
5 4 rspccv
 |-  ( A. x e. A -. x e. x -> ( A e. A -> -. A e. A ) )
6 5 pm2.01d
 |-  ( A. x e. A -. x e. x -> -. A e. A )