Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2trlncl |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
2 |
1
|
imp |
|- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> ( P ` 0 ) =/= ( P ` 2 ) ) |
3 |
|
crctprop |
|- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
4 |
|
fveq2 |
|- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
5 |
4
|
eqeq2d |
|- ( ( # ` F ) = 2 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 2 ) ) ) |
6 |
5
|
biimpcd |
|- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) = ( P ` 2 ) ) ) |
7 |
3 6
|
simpl2im |
|- ( F ( Circuits ` G ) P -> ( ( # ` F ) = 2 -> ( P ` 0 ) = ( P ` 2 ) ) ) |
8 |
7
|
com12 |
|- ( ( # ` F ) = 2 -> ( F ( Circuits ` G ) P -> ( P ` 0 ) = ( P ` 2 ) ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> ( F ( Circuits ` G ) P -> ( P ` 0 ) = ( P ` 2 ) ) ) |
10 |
9
|
necon3ad |
|- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> ( ( P ` 0 ) =/= ( P ` 2 ) -> -. F ( Circuits ` G ) P ) ) |
11 |
2 10
|
mpd |
|- ( ( ( G e. USGraph /\ ( # ` F ) = 2 ) /\ F ( Trails ` G ) P ) -> -. F ( Circuits ` G ) P ) |
12 |
11
|
ex |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Trails ` G ) P -> -. F ( Circuits ` G ) P ) ) |