Metamath Proof Explorer


Theorem usgr2trlncrct

Description: In a simple graph, any trail of length 2 is not a circuit. (Contributed by AV, 5-Jun-2021)

Ref Expression
Assertion usgr2trlncrct GUSGraphF=2FTrailsGP¬FCircuitsGP

Proof

Step Hyp Ref Expression
1 usgr2trlncl GUSGraphF=2FTrailsGPP0P2
2 1 imp GUSGraphF=2FTrailsGPP0P2
3 crctprop FCircuitsGPFTrailsGPP0=PF
4 fveq2 F=2PF=P2
5 4 eqeq2d F=2P0=PFP0=P2
6 5 biimpcd P0=PFF=2P0=P2
7 3 6 simpl2im FCircuitsGPF=2P0=P2
8 7 com12 F=2FCircuitsGPP0=P2
9 8 ad2antlr GUSGraphF=2FTrailsGPFCircuitsGPP0=P2
10 9 necon3ad GUSGraphF=2FTrailsGPP0P2¬FCircuitsGP
11 2 10 mpd GUSGraphF=2FTrailsGP¬FCircuitsGP
12 11 ex GUSGraphF=2FTrailsGP¬FCircuitsGP