| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrupgr |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3
|
upgrf1istrl |
|
| 5 |
1 4
|
syl |
|
| 6 |
|
eqidd |
|
| 7 |
|
oveq2 |
|
| 8 |
|
fzo0to2pr |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
|
eqidd |
|
| 11 |
6 9 10
|
f1eq123d |
|
| 12 |
9
|
raleqdv |
|
| 13 |
|
2wlklem |
|
| 14 |
12 13
|
bitrdi |
|
| 15 |
11 14
|
anbi12d |
|
| 16 |
15
|
adantl |
|
| 17 |
|
c0ex |
|
| 18 |
|
1ex |
|
| 19 |
17 18
|
pm3.2i |
|
| 20 |
|
0ne1 |
|
| 21 |
|
eqid |
|
| 22 |
21
|
f12dfv |
|
| 23 |
19 20 22
|
mp2an |
|
| 24 |
|
eqid |
|
| 25 |
3 24
|
usgrf1oedg |
|
| 26 |
|
f1of1 |
|
| 27 |
|
id |
|
| 28 |
17
|
prid1 |
|
| 29 |
28
|
a1i |
|
| 30 |
27 29
|
ffvelcdmd |
|
| 31 |
18
|
prid2 |
|
| 32 |
31
|
a1i |
|
| 33 |
27 32
|
ffvelcdmd |
|
| 34 |
30 33
|
jca |
|
| 35 |
34
|
anim1ci |
|
| 36 |
|
f1veqaeq |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
necon3d |
|
| 39 |
|
simpl |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
neeq12d |
|
| 42 |
|
preq1 |
|
| 43 |
|
prcom |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
44
|
necon3i |
|
| 46 |
41 45
|
biimtrdi |
|
| 47 |
46
|
com12 |
|
| 48 |
47
|
a1d |
|
| 49 |
38 48
|
syl6 |
|
| 50 |
49
|
expcom |
|
| 51 |
50
|
impd |
|
| 52 |
51
|
com23 |
|
| 53 |
26 52
|
syl |
|
| 54 |
25 53
|
mpcom |
|
| 55 |
23 54
|
biimtrid |
|
| 56 |
55
|
impd |
|
| 57 |
56
|
adantr |
|
| 58 |
16 57
|
sylbid |
|
| 59 |
58
|
com12 |
|
| 60 |
59
|
3adant2 |
|
| 61 |
60
|
expdcom |
|
| 62 |
61
|
com23 |
|
| 63 |
5 62
|
sylbid |
|
| 64 |
63
|
com23 |
|
| 65 |
64
|
imp |
|