Metamath Proof Explorer


Theorem usgr2trlncl

Description: In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion usgr2trlncl G USGraph F = 2 F Trails G P P 0 P 2

Proof

Step Hyp Ref Expression
1 usgrupgr G USGraph G UPGraph
2 eqid Vtx G = Vtx G
3 eqid iEdg G = iEdg G
4 2 3 upgrf1istrl G UPGraph F Trails G P F : 0 ..^ F 1-1 dom iEdg G P : 0 F Vtx G i 0 ..^ F iEdg G F i = P i P i + 1
5 1 4 syl G USGraph F Trails G P F : 0 ..^ F 1-1 dom iEdg G P : 0 F Vtx G i 0 ..^ F iEdg G F i = P i P i + 1
6 eqidd F = 2 F = F
7 oveq2 F = 2 0 ..^ F = 0 ..^ 2
8 fzo0to2pr 0 ..^ 2 = 0 1
9 7 8 eqtrdi F = 2 0 ..^ F = 0 1
10 eqidd F = 2 dom iEdg G = dom iEdg G
11 6 9 10 f1eq123d F = 2 F : 0 ..^ F 1-1 dom iEdg G F : 0 1 1-1 dom iEdg G
12 9 raleqdv F = 2 i 0 ..^ F iEdg G F i = P i P i + 1 i 0 1 iEdg G F i = P i P i + 1
13 2wlklem i 0 1 iEdg G F i = P i P i + 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2
14 12 13 bitrdi F = 2 i 0 ..^ F iEdg G F i = P i P i + 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2
15 11 14 anbi12d F = 2 F : 0 ..^ F 1-1 dom iEdg G i 0 ..^ F iEdg G F i = P i P i + 1 F : 0 1 1-1 dom iEdg G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2
16 15 adantl G USGraph F = 2 F : 0 ..^ F 1-1 dom iEdg G i 0 ..^ F iEdg G F i = P i P i + 1 F : 0 1 1-1 dom iEdg G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2
17 c0ex 0 V
18 1ex 1 V
19 17 18 pm3.2i 0 V 1 V
20 0ne1 0 1
21 eqid 0 1 = 0 1
22 21 f12dfv 0 V 1 V 0 1 F : 0 1 1-1 dom iEdg G F : 0 1 dom iEdg G F 0 F 1
23 19 20 22 mp2an F : 0 1 1-1 dom iEdg G F : 0 1 dom iEdg G F 0 F 1
24 eqid Edg G = Edg G
25 3 24 usgrf1oedg G USGraph iEdg G : dom iEdg G 1-1 onto Edg G
26 f1of1 iEdg G : dom iEdg G 1-1 onto Edg G iEdg G : dom iEdg G 1-1 Edg G
27 id F : 0 1 dom iEdg G F : 0 1 dom iEdg G
28 17 prid1 0 0 1
29 28 a1i F : 0 1 dom iEdg G 0 0 1
30 27 29 ffvelrnd F : 0 1 dom iEdg G F 0 dom iEdg G
31 18 prid2 1 0 1
32 31 a1i F : 0 1 dom iEdg G 1 0 1
33 27 32 ffvelrnd F : 0 1 dom iEdg G F 1 dom iEdg G
34 30 33 jca F : 0 1 dom iEdg G F 0 dom iEdg G F 1 dom iEdg G
35 34 anim1ci F : 0 1 dom iEdg G iEdg G : dom iEdg G 1-1 Edg G iEdg G : dom iEdg G 1-1 Edg G F 0 dom iEdg G F 1 dom iEdg G
36 f1veqaeq iEdg G : dom iEdg G 1-1 Edg G F 0 dom iEdg G F 1 dom iEdg G iEdg G F 0 = iEdg G F 1 F 0 = F 1
37 35 36 syl F : 0 1 dom iEdg G iEdg G : dom iEdg G 1-1 Edg G iEdg G F 0 = iEdg G F 1 F 0 = F 1
38 37 necon3d F : 0 1 dom iEdg G iEdg G : dom iEdg G 1-1 Edg G F 0 F 1 iEdg G F 0 iEdg G F 1
39 simpl iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 iEdg G F 0 = P 0 P 1
40 simpr iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 iEdg G F 1 = P 1 P 2
41 39 40 neeq12d iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 iEdg G F 0 iEdg G F 1 P 0 P 1 P 1 P 2
42 preq1 P 0 = P 2 P 0 P 1 = P 2 P 1
43 prcom P 2 P 1 = P 1 P 2
44 42 43 eqtrdi P 0 = P 2 P 0 P 1 = P 1 P 2
45 44 necon3i P 0 P 1 P 1 P 2 P 0 P 2
46 41 45 syl6bi iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 iEdg G F 0 iEdg G F 1 P 0 P 2
47 46 com12 iEdg G F 0 iEdg G F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
48 47 a1d iEdg G F 0 iEdg G F 1 G USGraph iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
49 38 48 syl6 F : 0 1 dom iEdg G iEdg G : dom iEdg G 1-1 Edg G F 0 F 1 G USGraph iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
50 49 expcom iEdg G : dom iEdg G 1-1 Edg G F : 0 1 dom iEdg G F 0 F 1 G USGraph iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
51 50 impd iEdg G : dom iEdg G 1-1 Edg G F : 0 1 dom iEdg G F 0 F 1 G USGraph iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
52 51 com23 iEdg G : dom iEdg G 1-1 Edg G G USGraph F : 0 1 dom iEdg G F 0 F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
53 26 52 syl iEdg G : dom iEdg G 1-1 onto Edg G G USGraph F : 0 1 dom iEdg G F 0 F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
54 25 53 mpcom G USGraph F : 0 1 dom iEdg G F 0 F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
55 23 54 syl5bi G USGraph F : 0 1 1-1 dom iEdg G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
56 55 impd G USGraph F : 0 1 1-1 dom iEdg G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
57 56 adantr G USGraph F = 2 F : 0 1 1-1 dom iEdg G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2
58 16 57 sylbid G USGraph F = 2 F : 0 ..^ F 1-1 dom iEdg G i 0 ..^ F iEdg G F i = P i P i + 1 P 0 P 2
59 58 com12 F : 0 ..^ F 1-1 dom iEdg G i 0 ..^ F iEdg G F i = P i P i + 1 G USGraph F = 2 P 0 P 2
60 59 3adant2 F : 0 ..^ F 1-1 dom iEdg G P : 0 F Vtx G i 0 ..^ F iEdg G F i = P i P i + 1 G USGraph F = 2 P 0 P 2
61 60 expdcom G USGraph F = 2 F : 0 ..^ F 1-1 dom iEdg G P : 0 F Vtx G i 0 ..^ F iEdg G F i = P i P i + 1 P 0 P 2
62 61 com23 G USGraph F : 0 ..^ F 1-1 dom iEdg G P : 0 F Vtx G i 0 ..^ F iEdg G F i = P i P i + 1 F = 2 P 0 P 2
63 5 62 sylbid G USGraph F Trails G P F = 2 P 0 P 2
64 63 com23 G USGraph F = 2 F Trails G P P 0 P 2
65 64 imp G USGraph F = 2 F Trails G P P 0 P 2