Metamath Proof Explorer


Theorem 2wlklem

Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018)

Ref Expression
Assertion 2wlklem k01EFk=PkPk+1EF0=P0P1EF1=P1P2

Proof

Step Hyp Ref Expression
1 c0ex 0V
2 1ex 1V
3 2fveq3 k=0EFk=EF0
4 fveq2 k=0Pk=P0
5 fv0p1e1 k=0Pk+1=P1
6 4 5 preq12d k=0PkPk+1=P0P1
7 3 6 eqeq12d k=0EFk=PkPk+1EF0=P0P1
8 2fveq3 k=1EFk=EF1
9 fveq2 k=1Pk=P1
10 oveq1 k=1k+1=1+1
11 1p1e2 1+1=2
12 10 11 eqtrdi k=1k+1=2
13 12 fveq2d k=1Pk+1=P2
14 9 13 preq12d k=1PkPk+1=P1P2
15 8 14 eqeq12d k=1EFk=PkPk+1EF1=P1P2
16 1 2 7 15 ralpr k01EFk=PkPk+1EF0=P0P1EF1=P1P2