Metamath Proof Explorer


Theorem upgr2wlk

Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018) (Revised by AV, 3-Jan-2021) (Revised by AV, 28-Oct-2021)

Ref Expression
Hypotheses upgr2wlk.v V=VtxG
upgr2wlk.i I=iEdgG
Assertion upgr2wlk GUPGraphFWalksGPF=2F:0..^2domIP:02VIF0=P0P1IF1=P1P2

Proof

Step Hyp Ref Expression
1 upgr2wlk.v V=VtxG
2 upgr2wlk.i I=iEdgG
3 1 2 upgriswlk GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
4 3 anbi1d GUPGraphFWalksGPF=2FWorddomIP:0FVk0..^FIFk=PkPk+1F=2
5 iswrdb FWorddomIF:0..^FdomI
6 oveq2 F=20..^F=0..^2
7 6 feq2d F=2F:0..^FdomIF:0..^2domI
8 5 7 bitrid F=2FWorddomIF:0..^2domI
9 oveq2 F=20F=02
10 9 feq2d F=2P:0FVP:02V
11 fzo0to2pr 0..^2=01
12 6 11 eqtrdi F=20..^F=01
13 12 raleqdv F=2k0..^FIFk=PkPk+1k01IFk=PkPk+1
14 2wlklem k01IFk=PkPk+1IF0=P0P1IF1=P1P2
15 13 14 bitrdi F=2k0..^FIFk=PkPk+1IF0=P0P1IF1=P1P2
16 8 10 15 3anbi123d F=2FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^2domIP:02VIF0=P0P1IF1=P1P2
17 16 adantl GUPGraphF=2FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^2domIP:02VIF0=P0P1IF1=P1P2
18 3anass F:0..^2domIP:02VIF0=P0P1IF1=P1P2F:0..^2domIP:02VIF0=P0P1IF1=P1P2
19 17 18 bitrdi GUPGraphF=2FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^2domIP:02VIF0=P0P1IF1=P1P2
20 19 ex GUPGraphF=2FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^2domIP:02VIF0=P0P1IF1=P1P2
21 20 pm5.32rd GUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1F=2F:0..^2domIP:02VIF0=P0P1IF1=P1P2F=2
22 3anass F:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2F:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2
23 an32 F:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2F:0..^2domIP:02VIF0=P0P1IF1=P1P2F=2
24 22 23 bitri F:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2F:0..^2domIP:02VIF0=P0P1IF1=P1P2F=2
25 21 24 bitr4di GUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1F=2F:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2
26 2nn0 20
27 fnfzo0hash 20F:0..^2domIF=2
28 26 27 mpan F:0..^2domIF=2
29 28 pm4.71i F:0..^2domIF:0..^2domIF=2
30 29 bicomi F:0..^2domIF=2F:0..^2domI
31 30 a1i GUPGraphF:0..^2domIF=2F:0..^2domI
32 31 3anbi1d GUPGraphF:0..^2domIF=2P:02VIF0=P0P1IF1=P1P2F:0..^2domIP:02VIF0=P0P1IF1=P1P2
33 4 25 32 3bitrd GUPGraphFWalksGPF=2F:0..^2domIP:02VIF0=P0P1IF1=P1P2