| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr2wlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgr2wlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upgriswlk |  |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 4 | 3 | anbi1d |  |-  ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) ) ) | 
						
							| 5 |  | iswrdb |  |-  ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) | 
						
							| 6 |  | oveq2 |  |-  ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) | 
						
							| 7 | 6 | feq2d |  |-  ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) --> dom I <-> F : ( 0 ..^ 2 ) --> dom I ) ) | 
						
							| 8 | 5 7 | bitrid |  |-  ( ( # ` F ) = 2 -> ( F e. Word dom I <-> F : ( 0 ..^ 2 ) --> dom I ) ) | 
						
							| 9 |  | oveq2 |  |-  ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) | 
						
							| 10 | 9 | feq2d |  |-  ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) | 
						
							| 11 |  | fzo0to2pr |  |-  ( 0 ..^ 2 ) = { 0 , 1 } | 
						
							| 12 | 6 11 | eqtrdi |  |-  ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) | 
						
							| 13 | 12 | raleqdv |  |-  ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 14 |  | 2wlklem |  |-  ( A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) | 
						
							| 15 | 13 14 | bitrdi |  |-  ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) | 
						
							| 16 | 8 10 15 | 3anbi123d |  |-  ( ( # ` F ) = 2 -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( G e. UPGraph /\ ( # ` F ) = 2 ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 18 |  | 3anass |  |-  ( ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 19 | 17 18 | bitrdi |  |-  ( ( G e. UPGraph /\ ( # ` F ) = 2 ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) ) | 
						
							| 20 | 19 | ex |  |-  ( G e. UPGraph -> ( ( # ` F ) = 2 -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) ) ) | 
						
							| 21 | 20 | pm5.32rd |  |-  ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) ) | 
						
							| 22 |  | 3anass |  |-  ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 23 |  | an32 |  |-  ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) | 
						
							| 24 | 22 23 | bitri |  |-  ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) | 
						
							| 25 | 21 24 | bitr4di |  |-  ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 26 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 27 |  | fnfzo0hash |  |-  ( ( 2 e. NN0 /\ F : ( 0 ..^ 2 ) --> dom I ) -> ( # ` F ) = 2 ) | 
						
							| 28 | 26 27 | mpan |  |-  ( F : ( 0 ..^ 2 ) --> dom I -> ( # ` F ) = 2 ) | 
						
							| 29 | 28 | pm4.71i |  |-  ( F : ( 0 ..^ 2 ) --> dom I <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) ) | 
						
							| 30 | 29 | bicomi |  |-  ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) <-> F : ( 0 ..^ 2 ) --> dom I ) | 
						
							| 31 | 30 | a1i |  |-  ( G e. UPGraph -> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) <-> F : ( 0 ..^ 2 ) --> dom I ) ) | 
						
							| 32 | 31 | 3anbi1d |  |-  ( G e. UPGraph -> ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) | 
						
							| 33 | 4 25 32 | 3bitrd |  |-  ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |