| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkres.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wlkres.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | wlkres.d |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 4 |  | wlkres.n |  |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 5 |  | wlkres.s |  |-  ( ph -> ( Vtx ` S ) = V ) | 
						
							| 6 |  | ax-1 |  |-  ( S e. _V -> ( ph -> S e. _V ) ) | 
						
							| 7 |  | df-nel |  |-  ( S e/ _V <-> -. S e. _V ) | 
						
							| 8 |  | df-br |  |-  ( F ( Walks ` G ) P <-> <. F , P >. e. ( Walks ` G ) ) | 
						
							| 9 |  | ne0i |  |-  ( <. F , P >. e. ( Walks ` G ) -> ( Walks ` G ) =/= (/) ) | 
						
							| 10 | 5 1 | eqtrdi |  |-  ( ph -> ( Vtx ` S ) = ( Vtx ` G ) ) | 
						
							| 11 | 10 | anim1ci |  |-  ( ( ph /\ S e/ _V ) -> ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) ) | 
						
							| 12 |  | wlk0prc |  |-  ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Walks ` G ) = (/) ) | 
						
							| 13 |  | eqneqall |  |-  ( ( Walks ` G ) = (/) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( ph /\ S e/ _V ) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) | 
						
							| 15 | 14 | expcom |  |-  ( S e/ _V -> ( ph -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) ) | 
						
							| 16 | 15 | com13 |  |-  ( ( Walks ` G ) =/= (/) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) | 
						
							| 17 | 9 16 | syl |  |-  ( <. F , P >. e. ( Walks ` G ) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) | 
						
							| 18 | 8 17 | sylbi |  |-  ( F ( Walks ` G ) P -> ( ph -> ( S e/ _V -> S e. _V ) ) ) | 
						
							| 19 | 3 18 | mpcom |  |-  ( ph -> ( S e/ _V -> S e. _V ) ) | 
						
							| 20 | 19 | com12 |  |-  ( S e/ _V -> ( ph -> S e. _V ) ) | 
						
							| 21 | 7 20 | sylbir |  |-  ( -. S e. _V -> ( ph -> S e. _V ) ) | 
						
							| 22 | 6 21 | pm2.61i |  |-  ( ph -> S e. _V ) |