| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkres.v |
|- V = ( Vtx ` G ) |
| 2 |
|
wlkres.i |
|- I = ( iEdg ` G ) |
| 3 |
|
wlkres.d |
|- ( ph -> F ( Walks ` G ) P ) |
| 4 |
|
wlkres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 5 |
|
wlkres.s |
|- ( ph -> ( Vtx ` S ) = V ) |
| 6 |
|
wlkres.e |
|- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 7 |
|
wlkres.h |
|- H = ( F prefix N ) |
| 8 |
|
wlkres.q |
|- Q = ( P |` ( 0 ... N ) ) |
| 9 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 10 |
|
pfxwrdsymb |
|- ( F e. Word dom I -> ( F prefix N ) e. Word ( F " ( 0 ..^ N ) ) ) |
| 11 |
3 9 10
|
3syl |
|- ( ph -> ( F prefix N ) e. Word ( F " ( 0 ..^ N ) ) ) |
| 12 |
7
|
a1i |
|- ( ph -> H = ( F prefix N ) ) |
| 13 |
6
|
dmeqd |
|- ( ph -> dom ( iEdg ` S ) = dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 14 |
3 9
|
syl |
|- ( ph -> F e. Word dom I ) |
| 15 |
|
wrdf |
|- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 16 |
|
fimass |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 17 |
14 15 16
|
3syl |
|- ( ph -> ( F " ( 0 ..^ N ) ) C_ dom I ) |
| 18 |
|
ssdmres |
|- ( ( F " ( 0 ..^ N ) ) C_ dom I <-> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 19 |
17 18
|
sylib |
|- ( ph -> dom ( I |` ( F " ( 0 ..^ N ) ) ) = ( F " ( 0 ..^ N ) ) ) |
| 20 |
13 19
|
eqtrd |
|- ( ph -> dom ( iEdg ` S ) = ( F " ( 0 ..^ N ) ) ) |
| 21 |
|
wrdeq |
|- ( dom ( iEdg ` S ) = ( F " ( 0 ..^ N ) ) -> Word dom ( iEdg ` S ) = Word ( F " ( 0 ..^ N ) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> Word dom ( iEdg ` S ) = Word ( F " ( 0 ..^ N ) ) ) |
| 23 |
11 12 22
|
3eltr4d |
|- ( ph -> H e. Word dom ( iEdg ` S ) ) |
| 24 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 25 |
3 24
|
syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 26 |
5
|
feq3d |
|- ( ph -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 27 |
25 26
|
mpbird |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` S ) ) |
| 28 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 29 |
28 4
|
sselid |
|- ( ph -> N e. ( 0 ... ( # ` F ) ) ) |
| 30 |
|
elfzuz3 |
|- ( N e. ( 0 ... ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 31 |
|
fzss2 |
|- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... ( # ` F ) ) ) |
| 32 |
29 30 31
|
3syl |
|- ( ph -> ( 0 ... N ) C_ ( 0 ... ( # ` F ) ) ) |
| 33 |
27 32
|
fssresd |
|- ( ph -> ( P |` ( 0 ... N ) ) : ( 0 ... N ) --> ( Vtx ` S ) ) |
| 34 |
7
|
fveq2i |
|- ( # ` H ) = ( # ` ( F prefix N ) ) |
| 35 |
|
pfxlen |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( # ` ( F prefix N ) ) = N ) |
| 36 |
14 29 35
|
syl2anc |
|- ( ph -> ( # ` ( F prefix N ) ) = N ) |
| 37 |
34 36
|
eqtrid |
|- ( ph -> ( # ` H ) = N ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` H ) ) = ( 0 ... N ) ) |
| 39 |
38
|
feq2d |
|- ( ph -> ( ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) <-> ( P |` ( 0 ... N ) ) : ( 0 ... N ) --> ( Vtx ` S ) ) ) |
| 40 |
33 39
|
mpbird |
|- ( ph -> ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 41 |
8
|
feq1i |
|- ( Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) <-> ( P |` ( 0 ... N ) ) : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 42 |
40 41
|
sylibr |
|- ( ph -> Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) ) |
| 43 |
1 2
|
wlkprop |
|- ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 44 |
3 43
|
syl |
|- ( ph -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| 46 |
37
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ N ) ) |
| 47 |
46
|
eleq2d |
|- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) <-> x e. ( 0 ..^ N ) ) ) |
| 48 |
8
|
fveq1i |
|- ( Q ` x ) = ( ( P |` ( 0 ... N ) ) ` x ) |
| 49 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
| 50 |
49
|
a1i |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ... N ) ) |
| 51 |
50
|
sselda |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ... N ) ) |
| 52 |
51
|
fvresd |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P |` ( 0 ... N ) ) ` x ) = ( P ` x ) ) |
| 53 |
48 52
|
eqtr2id |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( P ` x ) = ( Q ` x ) ) |
| 54 |
8
|
fveq1i |
|- ( Q ` ( x + 1 ) ) = ( ( P |` ( 0 ... N ) ) ` ( x + 1 ) ) |
| 55 |
|
fzofzp1 |
|- ( x e. ( 0 ..^ N ) -> ( x + 1 ) e. ( 0 ... N ) ) |
| 56 |
55
|
adantl |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( x + 1 ) e. ( 0 ... N ) ) |
| 57 |
56
|
fvresd |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P |` ( 0 ... N ) ) ` ( x + 1 ) ) = ( P ` ( x + 1 ) ) ) |
| 58 |
54 57
|
eqtr2id |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) |
| 59 |
53 58
|
jca |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) |
| 60 |
59
|
ex |
|- ( ph -> ( x e. ( 0 ..^ N ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) ) |
| 61 |
47 60
|
sylbid |
|- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) ) |
| 62 |
61
|
imp |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) ) |
| 63 |
14
|
ancli |
|- ( ph -> ( ph /\ F e. Word dom I ) ) |
| 64 |
15
|
ffund |
|- ( F e. Word dom I -> Fun F ) |
| 65 |
64
|
adantl |
|- ( ( ph /\ F e. Word dom I ) -> Fun F ) |
| 66 |
65
|
adantr |
|- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> Fun F ) |
| 67 |
|
fdm |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 68 |
|
elfzouz2 |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 69 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 70 |
4 68 69
|
3syl |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 71 |
|
sseq2 |
|- ( dom F = ( 0 ..^ ( # ` F ) ) -> ( ( 0 ..^ N ) C_ dom F <-> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) ) |
| 72 |
70 71
|
imbitrrid |
|- ( dom F = ( 0 ..^ ( # ` F ) ) -> ( ph -> ( 0 ..^ N ) C_ dom F ) ) |
| 73 |
15 67 72
|
3syl |
|- ( F e. Word dom I -> ( ph -> ( 0 ..^ N ) C_ dom F ) ) |
| 74 |
73
|
impcom |
|- ( ( ph /\ F e. Word dom I ) -> ( 0 ..^ N ) C_ dom F ) |
| 75 |
74
|
adantr |
|- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) C_ dom F ) |
| 76 |
|
simpr |
|- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> x e. ( 0 ..^ N ) ) |
| 77 |
66 75 76
|
resfvresima |
|- ( ( ( ph /\ F e. Word dom I ) /\ x e. ( 0 ..^ N ) ) -> ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) = ( I ` ( F ` x ) ) ) |
| 78 |
63 77
|
sylan |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) = ( I ` ( F ` x ) ) ) |
| 79 |
78
|
eqcomd |
|- ( ( ph /\ x e. ( 0 ..^ N ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 80 |
79
|
ex |
|- ( ph -> ( x e. ( 0 ..^ N ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) ) |
| 81 |
47 80
|
sylbid |
|- ( ph -> ( x e. ( 0 ..^ ( # ` H ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) ) |
| 82 |
81
|
imp |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( I ` ( F ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 83 |
6
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 84 |
7
|
fveq1i |
|- ( H ` x ) = ( ( F prefix N ) ` x ) |
| 85 |
14
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> F e. Word dom I ) |
| 86 |
29
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> N e. ( 0 ... ( # ` F ) ) ) |
| 87 |
|
pfxres |
|- ( ( F e. Word dom I /\ N e. ( 0 ... ( # ` F ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 88 |
85 86 87
|
syl2anc |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( F prefix N ) = ( F |` ( 0 ..^ N ) ) ) |
| 89 |
88
|
fveq1d |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( F prefix N ) ` x ) = ( ( F |` ( 0 ..^ N ) ) ` x ) ) |
| 90 |
84 89
|
eqtrid |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( H ` x ) = ( ( F |` ( 0 ..^ N ) ) ` x ) ) |
| 91 |
83 90
|
fveq12d |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( iEdg ` S ) ` ( H ` x ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) ` ( ( F |` ( 0 ..^ N ) ) ` x ) ) ) |
| 92 |
82 91
|
eqtr4d |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) |
| 93 |
62 92
|
jca |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 94 |
4 68
|
syl |
|- ( ph -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 95 |
37
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( # ` H ) ) = ( ZZ>= ` N ) ) |
| 96 |
94 95
|
eleqtrrd |
|- ( ph -> ( # ` F ) e. ( ZZ>= ` ( # ` H ) ) ) |
| 97 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` ( # ` H ) ) -> ( 0 ..^ ( # ` H ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 98 |
96 97
|
syl |
|- ( ph -> ( 0 ..^ ( # ` H ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 99 |
98
|
sselda |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> x e. ( 0 ..^ ( # ` F ) ) ) |
| 100 |
|
wkslem1 |
|- ( k = x -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
| 101 |
100
|
rspcv |
|- ( x e. ( 0 ..^ ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
| 102 |
99 101
|
syl |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) ) ) |
| 103 |
|
eqeq12 |
|- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> ( ( P ` x ) = ( P ` ( x + 1 ) ) <-> ( Q ` x ) = ( Q ` ( x + 1 ) ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( ( P ` x ) = ( P ` ( x + 1 ) ) <-> ( Q ` x ) = ( Q ` ( x + 1 ) ) ) ) |
| 105 |
|
simpr |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) |
| 106 |
|
sneq |
|- ( ( P ` x ) = ( Q ` x ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
| 107 |
106
|
adantr |
|- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
| 108 |
107
|
adantr |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> { ( P ` x ) } = { ( Q ` x ) } ) |
| 109 |
105 108
|
eqeq12d |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( ( I ` ( F ` x ) ) = { ( P ` x ) } <-> ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } ) ) |
| 110 |
|
preq12 |
|- ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( Q ` x ) , ( Q ` ( x + 1 ) ) } ) |
| 111 |
110
|
adantr |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( Q ` x ) , ( Q ` ( x + 1 ) ) } ) |
| 112 |
111 105
|
sseq12d |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) <-> { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 113 |
104 109 112
|
ifpbi123d |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) <-> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 114 |
113
|
biimpd |
|- ( ( ( ( P ` x ) = ( Q ` x ) /\ ( P ` ( x + 1 ) ) = ( Q ` ( x + 1 ) ) ) /\ ( I ` ( F ` x ) ) = ( ( iEdg ` S ) ` ( H ` x ) ) ) -> ( if- ( ( P ` x ) = ( P ` ( x + 1 ) ) , ( I ` ( F ` x ) ) = { ( P ` x ) } , { ( P ` x ) , ( P ` ( x + 1 ) ) } C_ ( I ` ( F ` x ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 115 |
93 102 114
|
sylsyld |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 116 |
115
|
com12 |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 117 |
116
|
3ad2ant3 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) |
| 118 |
45 117
|
mpcom |
|- ( ( ph /\ x e. ( 0 ..^ ( # ` H ) ) ) -> if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 119 |
118
|
ralrimiva |
|- ( ph -> A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) |
| 120 |
1 2 3 4 5
|
wlkreslem |
|- ( ph -> S e. _V ) |
| 121 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 122 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
| 123 |
121 122
|
iswlkg |
|- ( S e. _V -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) ) |
| 124 |
120 123
|
syl |
|- ( ph -> ( H ( Walks ` S ) Q <-> ( H e. Word dom ( iEdg ` S ) /\ Q : ( 0 ... ( # ` H ) ) --> ( Vtx ` S ) /\ A. x e. ( 0 ..^ ( # ` H ) ) if- ( ( Q ` x ) = ( Q ` ( x + 1 ) ) , ( ( iEdg ` S ) ` ( H ` x ) ) = { ( Q ` x ) } , { ( Q ` x ) , ( Q ` ( x + 1 ) ) } C_ ( ( iEdg ` S ) ` ( H ` x ) ) ) ) ) ) |
| 125 |
23 42 119 124
|
mpbir3and |
|- ( ph -> H ( Walks ` S ) Q ) |