| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
wlkres.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
wlkres.d |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 4 |
|
wlkres.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 5 |
|
wlkres.s |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 6 |
|
wlkres.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 7 |
|
wlkres.h |
⊢ 𝐻 = ( 𝐹 prefix 𝑁 ) |
| 8 |
|
wlkres.q |
⊢ 𝑄 = ( 𝑃 ↾ ( 0 ... 𝑁 ) ) |
| 9 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 10 |
|
pfxwrdsymb |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 𝐹 prefix 𝑁 ) ∈ Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 12 |
7
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝐹 prefix 𝑁 ) ) |
| 13 |
6
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 14 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 15 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 16 |
|
fimass |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
| 17 |
14 15 16
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ) |
| 18 |
|
ssdmres |
⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 19 |
17 18
|
sylib |
⊢ ( 𝜑 → dom ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 21 |
|
wrdeq |
⊢ ( dom ( iEdg ‘ 𝑆 ) = ( 𝐹 “ ( 0 ..^ 𝑁 ) ) → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → Word dom ( iEdg ‘ 𝑆 ) = Word ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) |
| 23 |
11 12 22
|
3eltr4d |
⊢ ( 𝜑 → 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ) |
| 24 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 25 |
3 24
|
syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 26 |
5
|
feq3d |
⊢ ( 𝜑 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 27 |
25 26
|
mpbird |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 28 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 29 |
28 4
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 30 |
|
elfzuz3 |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 31 |
|
fzss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 32 |
29 30 31
|
3syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 33 |
27 32
|
fssresd |
⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 34 |
7
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) |
| 35 |
|
pfxlen |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 36 |
14 29 35
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 prefix 𝑁 ) ) = 𝑁 ) |
| 37 |
34 36
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = 𝑁 ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... 𝑁 ) ) |
| 39 |
38
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... 𝑁 ) ⟶ ( Vtx ‘ 𝑆 ) ) ) |
| 40 |
33 39
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 41 |
8
|
feq1i |
⊢ ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ↾ ( 0 ... 𝑁 ) ) : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 43 |
1 2
|
wlkprop |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 44 |
3 43
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 46 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ 𝑁 ) ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 48 |
8
|
fveq1i |
⊢ ( 𝑄 ‘ 𝑥 ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) |
| 49 |
|
fzossfz |
⊢ ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 51 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ... 𝑁 ) ) |
| 52 |
51
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 53 |
48 52
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ) |
| 54 |
8
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝑥 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) |
| 55 |
|
fzofzp1 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 57 |
56
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ↾ ( 0 ... 𝑁 ) ) ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ) |
| 58 |
54 57
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) |
| 59 |
53 58
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 61 |
47 60
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 62 |
61
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 63 |
14
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ) |
| 64 |
15
|
ffund |
⊢ ( 𝐹 ∈ Word dom 𝐼 → Fun 𝐹 ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → Fun 𝐹 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → Fun 𝐹 ) |
| 67 |
|
fdm |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 68 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 69 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 70 |
4 68 69
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 71 |
|
sseq2 |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ↔ ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 72 |
70 71
|
imbitrrid |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
| 73 |
15 67 72
|
3syl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) ) |
| 74 |
73
|
impcom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ 𝑁 ) ⊆ dom 𝐹 ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) |
| 77 |
66 75 76
|
resfvresima |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ Word dom 𝐼 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 78 |
63 77
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 79 |
78
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 80 |
79
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
| 81 |
47 80
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 83 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) |
| 84 |
7
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) |
| 85 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
| 86 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 87 |
|
pfxres |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 88 |
85 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐹 prefix 𝑁 ) = ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ) |
| 89 |
88
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( 𝐹 prefix 𝑁 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
| 90 |
84 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐻 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) |
| 91 |
83 90
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ‘ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 92 |
82 91
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 93 |
62 92
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 94 |
4 68
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 95 |
37
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 96 |
94 95
|
eleqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 97 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐻 ) ) → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 98 |
96 97
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 99 |
98
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 100 |
|
wkslem1 |
⊢ ( 𝑘 = 𝑥 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 101 |
100
|
rspcv |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 102 |
99 101
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 103 |
|
eqeq12 |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ↔ ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ) |
| 105 |
|
simpr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 106 |
|
sneq |
⊢ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
| 108 |
107
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) } = { ( 𝑄 ‘ 𝑥 ) } ) |
| 109 |
105 108
|
eqeq12d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } ↔ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } ) ) |
| 110 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) |
| 111 |
110
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ) |
| 112 |
111 105
|
sseq12d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 113 |
104 109 112
|
ifpbi123d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ↔ if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 114 |
113
|
biimpd |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑥 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) } , { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 115 |
93 102 114
|
sylsyld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 116 |
115
|
com12 |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 117 |
116
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 118 |
45 117
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) → if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 119 |
118
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 120 |
1 2 3 4 5
|
wlkreslem |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 121 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
| 122 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
| 123 |
121 122
|
iswlkg |
⊢ ( 𝑆 ∈ V → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
| 124 |
120 123
|
syl |
⊢ ( 𝜑 → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑥 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) = { ( 𝑄 ‘ 𝑥 ) } , { ( 𝑄 ‘ 𝑥 ) , ( 𝑄 ‘ ( 𝑥 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) ) |
| 125 |
23 42 119 124
|
mpbir3and |
⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |