Metamath Proof Explorer


Theorem upgrf1istrl

Description: Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypotheses upgrtrls.v V = Vtx G
upgrtrls.i I = iEdg G
Assertion upgrf1istrl G UPGraph F Trails G P F : 0 ..^ F 1-1 dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 upgrtrls.v V = Vtx G
2 upgrtrls.i I = iEdg G
3 1 2 upgristrl G UPGraph F Trails G P F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1
4 iswrdb F Word dom I F : 0 ..^ F dom I
5 4 a1i G UPGraph F Word dom I F : 0 ..^ F dom I
6 5 anbi1d G UPGraph F Word dom I Fun F -1 F : 0 ..^ F dom I Fun F -1
7 df-f1 F : 0 ..^ F 1-1 dom I F : 0 ..^ F dom I Fun F -1
8 6 7 bitr4di G UPGraph F Word dom I Fun F -1 F : 0 ..^ F 1-1 dom I
9 8 3anbi1d G UPGraph F Word dom I Fun F -1 P : 0 F V k 0 ..^ F I F k = P k P k + 1 F : 0 ..^ F 1-1 dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
10 3 9 bitrd G UPGraph F Trails G P F : 0 ..^ F 1-1 dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1