Metamath Proof Explorer


Theorem upgrf1istrl

Description: Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypotheses upgrtrls.v V=VtxG
upgrtrls.i I=iEdgG
Assertion upgrf1istrl GUPGraphFTrailsGPF:0..^F1-1domIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upgrtrls.v V=VtxG
2 upgrtrls.i I=iEdgG
3 1 2 upgristrl GUPGraphFTrailsGPFWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1
4 iswrdb FWorddomIF:0..^FdomI
5 4 a1i GUPGraphFWorddomIF:0..^FdomI
6 5 anbi1d GUPGraphFWorddomIFunF-1F:0..^FdomIFunF-1
7 df-f1 F:0..^F1-1domIF:0..^FdomIFunF-1
8 6 7 bitr4di GUPGraphFWorddomIFunF-1F:0..^F1-1domI
9 8 3anbi1d GUPGraphFWorddomIFunF-1P:0FVk0..^FIFk=PkPk+1F:0..^F1-1domIP:0FVk0..^FIFk=PkPk+1
10 3 9 bitrd GUPGraphFTrailsGPF:0..^F1-1domIP:0FVk0..^FIFk=PkPk+1