Metamath Proof Explorer


Theorem usgredg2ALT

Description: Alternate proof of usgredg2 , not using umgredg2 . (Contributed by Alexander van der Vekens, 11-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis usgredg2.e
|- E = ( iEdg ` G )
Assertion usgredg2ALT
|- ( ( G e. USGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 )

Proof

Step Hyp Ref Expression
1 usgredg2.e
 |-  E = ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 2 1 usgrf
 |-  ( G e. USGraph -> E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } )
4 f1f
 |-  ( E : dom E -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> E : dom E --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } )
5 3 4 syl
 |-  ( G e. USGraph -> E : dom E --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } )
6 5 ffvelrnda
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } )
7 fveq2
 |-  ( x = ( E ` X ) -> ( # ` x ) = ( # ` ( E ` X ) ) )
8 7 eqeq1d
 |-  ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) )
9 8 elrab
 |-  ( ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` ( E ` X ) ) = 2 ) )
10 9 simprbi
 |-  ( ( E ` X ) e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 )
11 6 10 syl
 |-  ( ( G e. USGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 )