Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uun111.1 | |- ( ( ph /\ ph /\ ph ) -> ps ) | |
| Assertion | uun111 | |- ( ph -> ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uun111.1 | |- ( ( ph /\ ph /\ ph ) -> ps ) | |
| 2 | 3anass | |- ( ( ph /\ ph /\ ph ) <-> ( ph /\ ( ph /\ ph ) ) ) | |
| 3 | anabs5 | |- ( ( ph /\ ( ph /\ ph ) ) <-> ( ph /\ ph ) ) | |
| 4 | anidm | |- ( ( ph /\ ph ) <-> ph ) | |
| 5 | 2 3 4 | 3bitri | |- ( ( ph /\ ph /\ ph ) <-> ph ) | 
| 6 | 5 1 | sylbir | |- ( ph -> ps ) |