Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uun121p1.1 | |- ( ( ( ph /\ ps ) /\ ph ) -> ch ) |
|
| Assertion | uun121p1 | |- ( ( ph /\ ps ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uun121p1.1 | |- ( ( ( ph /\ ps ) /\ ph ) -> ch ) |
|
| 2 | anabs1 | |- ( ( ( ph /\ ps ) /\ ph ) <-> ( ph /\ ps ) ) |
|
| 3 | 2 1 | sylbir | |- ( ( ph /\ ps ) -> ch ) |