Metamath Proof Explorer


Theorem uzubico

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico.1
|- ( ph -> M e. ZZ )
uzubico.2
|- Z = ( ZZ>= ` M )
uzubico.3
|- ( ph -> X e. RR )
Assertion uzubico
|- ( ph -> E. k e. ( X [,) +oo ) k e. Z )

Proof

Step Hyp Ref Expression
1 uzubico.1
 |-  ( ph -> M e. ZZ )
2 uzubico.2
 |-  Z = ( ZZ>= ` M )
3 uzubico.3
 |-  ( ph -> X e. RR )
4 1 2 3 uzubioo
 |-  ( ph -> E. k e. ( X (,) +oo ) k e. Z )
5 ioossico
 |-  ( X (,) +oo ) C_ ( X [,) +oo )
6 ssrexv
 |-  ( ( X (,) +oo ) C_ ( X [,) +oo ) -> ( E. k e. ( X (,) +oo ) k e. Z -> E. k e. ( X [,) +oo ) k e. Z ) )
7 5 6 ax-mp
 |-  ( E. k e. ( X (,) +oo ) k e. Z -> E. k e. ( X [,) +oo ) k e. Z )
8 4 7 syl
 |-  ( ph -> E. k e. ( X [,) +oo ) k e. Z )