Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzubico.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| uzubico.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| uzubico.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | ||
| Assertion | uzubico | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzubico.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | uzubico.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | uzubico.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 4 | 1 2 3 | uzubioo | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 5 | ioossico | ⊢ ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ ) | |
| 6 | ssrexv | ⊢ ( ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ ) → ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |