Metamath Proof Explorer


Theorem uzubico

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico.1 ( 𝜑𝑀 ∈ ℤ )
uzubico.2 𝑍 = ( ℤ𝑀 )
uzubico.3 ( 𝜑𝑋 ∈ ℝ )
Assertion uzubico ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘𝑍 )

Proof

Step Hyp Ref Expression
1 uzubico.1 ( 𝜑𝑀 ∈ ℤ )
2 uzubico.2 𝑍 = ( ℤ𝑀 )
3 uzubico.3 ( 𝜑𝑋 ∈ ℝ )
4 1 2 3 uzubioo ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘𝑍 )
5 ioossico ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ )
6 ssrexv ( ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ ) → ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘𝑍 ) )
7 5 6 ax-mp ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘𝑍 )
8 4 7 syl ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘𝑍 )