Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uzubico.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
uzubico.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
uzubico.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | ||
Assertion | uzubico | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzubico.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
2 | uzubico.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
3 | uzubico.3 | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
4 | 1 2 3 | uzubioo | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 ) |
5 | ioossico | ⊢ ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ ) | |
6 | ssrexv | ⊢ ( ( 𝑋 (,) +∞ ) ⊆ ( 𝑋 [,) +∞ ) → ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) ) | |
7 | 5 6 | ax-mp | ⊢ ( ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
8 | 4 7 | syl | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 [,) +∞ ) 𝑘 ∈ 𝑍 ) |