| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzubioo.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
uzubioo.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
uzubioo.3 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
3
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 5 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 7 |
3
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ 𝑋 ) ∈ ℤ ) |
| 8 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 9 |
7 8
|
zaddcld |
⊢ ( 𝜑 → ( ( ⌈ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 10 |
9
|
zred |
⊢ ( 𝜑 → ( ( ⌈ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 11 |
1
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 12 |
10 11
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 13 |
7
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ 𝑋 ) ∈ ℝ ) |
| 14 |
3
|
ceilged |
⊢ ( 𝜑 → 𝑋 ≤ ( ⌈ ‘ 𝑋 ) ) |
| 15 |
13
|
ltp1d |
⊢ ( 𝜑 → ( ⌈ ‘ 𝑋 ) < ( ( ⌈ ‘ 𝑋 ) + 1 ) ) |
| 16 |
3 13 10 14 15
|
lelttrd |
⊢ ( 𝜑 → 𝑋 < ( ( ⌈ ‘ 𝑋 ) + 1 ) ) |
| 17 |
11 10
|
max2d |
⊢ ( 𝜑 → ( ( ⌈ ‘ 𝑋 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ) |
| 18 |
3 10 12 16 17
|
ltletrd |
⊢ ( 𝜑 → 𝑋 < if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ) |
| 19 |
12
|
ltpnfd |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) < +∞ ) |
| 20 |
4 6 12 18 19
|
eliood |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ ( 𝑋 (,) +∞ ) ) |
| 21 |
9 1
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 22 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌈ ‘ 𝑋 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ) |
| 23 |
11 10 22
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ) |
| 24 |
2 1 21 23
|
eluzd |
⊢ ( 𝜑 → if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 25 |
|
eleq1 |
⊢ ( 𝑘 = if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) → ( 𝑘 ∈ 𝑍 ↔ if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) ) |
| 26 |
25
|
rspcev |
⊢ ( ( if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ ( 𝑋 (,) +∞ ) ∧ if ( 𝑀 ≤ ( ( ⌈ ‘ 𝑋 ) + 1 ) , ( ( ⌈ ‘ 𝑋 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) → ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 27 |
20 24 26
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑋 (,) +∞ ) 𝑘 ∈ 𝑍 ) |