Metamath Proof Explorer


Theorem uzubioo

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubioo.1 φ M
uzubioo.2 Z = M
uzubioo.3 φ X
Assertion uzubioo φ k X +∞ k Z

Proof

Step Hyp Ref Expression
1 uzubioo.1 φ M
2 uzubioo.2 Z = M
3 uzubioo.3 φ X
4 3 rexrd φ X *
5 pnfxr +∞ *
6 5 a1i φ +∞ *
7 3 ceilcld φ X
8 1zzd φ 1
9 7 8 zaddcld φ X + 1
10 9 zred φ X + 1
11 1 zred φ M
12 10 11 ifcld φ if M X + 1 X + 1 M
13 7 zred φ X
14 3 ceilged φ X X
15 13 ltp1d φ X < X + 1
16 3 13 10 14 15 lelttrd φ X < X + 1
17 11 10 max2d φ X + 1 if M X + 1 X + 1 M
18 3 10 12 16 17 ltletrd φ X < if M X + 1 X + 1 M
19 12 ltpnfd φ if M X + 1 X + 1 M < +∞
20 4 6 12 18 19 eliood φ if M X + 1 X + 1 M X +∞
21 9 1 ifcld φ if M X + 1 X + 1 M
22 max1 M X + 1 M if M X + 1 X + 1 M
23 11 10 22 syl2anc φ M if M X + 1 X + 1 M
24 2 1 21 23 eluzd φ if M X + 1 X + 1 M Z
25 eleq1 k = if M X + 1 X + 1 M k Z if M X + 1 X + 1 M Z
26 25 rspcev if M X + 1 X + 1 M X +∞ if M X + 1 X + 1 M Z k X +∞ k Z
27 20 24 26 syl2anc φ k X +∞ k Z