Step |
Hyp |
Ref |
Expression |
1 |
|
hashnbusgrvd.v |
|- V = ( Vtx ` G ) |
2 |
|
fusgrusgr |
|- ( G e. FinUSGraph -> G e. USGraph ) |
3 |
1
|
cusgruvtxb |
|- ( G e. USGraph -> ( G e. ComplUSGraph <-> ( UnivVtx ` G ) = V ) ) |
4 |
1
|
uvtxssvtx |
|- ( UnivVtx ` G ) C_ V |
5 |
|
eqcom |
|- ( ( UnivVtx ` G ) = V <-> V = ( UnivVtx ` G ) ) |
6 |
|
sssseq |
|- ( ( UnivVtx ` G ) C_ V -> ( V C_ ( UnivVtx ` G ) <-> V = ( UnivVtx ` G ) ) ) |
7 |
5 6
|
bitr4id |
|- ( ( UnivVtx ` G ) C_ V -> ( ( UnivVtx ` G ) = V <-> V C_ ( UnivVtx ` G ) ) ) |
8 |
4 7
|
mp1i |
|- ( G e. USGraph -> ( ( UnivVtx ` G ) = V <-> V C_ ( UnivVtx ` G ) ) ) |
9 |
3 8
|
bitrd |
|- ( G e. USGraph -> ( G e. ComplUSGraph <-> V C_ ( UnivVtx ` G ) ) ) |
10 |
|
dfss3 |
|- ( V C_ ( UnivVtx ` G ) <-> A. v e. V v e. ( UnivVtx ` G ) ) |
11 |
9 10
|
bitrdi |
|- ( G e. USGraph -> ( G e. ComplUSGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
12 |
2 11
|
syl |
|- ( G e. FinUSGraph -> ( G e. ComplUSGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
13 |
1
|
usgruvtxvdb |
|- ( ( G e. FinUSGraph /\ v e. V ) -> ( v e. ( UnivVtx ` G ) <-> ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
14 |
13
|
ralbidva |
|- ( G e. FinUSGraph -> ( A. v e. V v e. ( UnivVtx ` G ) <-> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |
15 |
12 14
|
bitrd |
|- ( G e. FinUSGraph -> ( G e. ComplUSGraph <-> A. v e. V ( ( VtxDeg ` G ) ` v ) = ( ( # ` V ) - 1 ) ) ) |