Metamath Proof Explorer


Theorem vonvol

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol.a
|- ( ph -> A e. V )
vonvol.b
|- ( ph -> B e. dom vol )
Assertion vonvol
|- ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( vol ` B ) )

Proof

Step Hyp Ref Expression
1 vonvol.a
 |-  ( ph -> A e. V )
2 vonvol.b
 |-  ( ph -> B e. dom vol )
3 mblss
 |-  ( B e. dom vol -> B C_ RR )
4 2 3 syl
 |-  ( ph -> B C_ RR )
5 1 4 ovnovol
 |-  ( ph -> ( ( voln* ` { A } ) ` ( B ^m { A } ) ) = ( vol* ` B ) )
6 snfi
 |-  { A } e. Fin
7 6 a1i
 |-  ( ph -> { A } e. Fin )
8 1 4 vonvolmbl
 |-  ( ph -> ( ( B ^m { A } ) e. dom ( voln ` { A } ) <-> B e. dom vol ) )
9 2 8 mpbird
 |-  ( ph -> ( B ^m { A } ) e. dom ( voln ` { A } ) )
10 7 9 mblvon
 |-  ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( ( voln* ` { A } ) ` ( B ^m { A } ) ) )
11 mblvol
 |-  ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) )
12 2 11 syl
 |-  ( ph -> ( vol ` B ) = ( vol* ` B ) )
13 5 10 12 3eqtr4d
 |-  ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( vol ` B ) )