| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvol.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | vonvol.b |  |-  ( ph -> B e. dom vol ) | 
						
							| 3 |  | mblss |  |-  ( B e. dom vol -> B C_ RR ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> B C_ RR ) | 
						
							| 5 | 1 4 | ovnovol |  |-  ( ph -> ( ( voln* ` { A } ) ` ( B ^m { A } ) ) = ( vol* ` B ) ) | 
						
							| 6 |  | snfi |  |-  { A } e. Fin | 
						
							| 7 | 6 | a1i |  |-  ( ph -> { A } e. Fin ) | 
						
							| 8 | 1 4 | vonvolmbl |  |-  ( ph -> ( ( B ^m { A } ) e. dom ( voln ` { A } ) <-> B e. dom vol ) ) | 
						
							| 9 | 2 8 | mpbird |  |-  ( ph -> ( B ^m { A } ) e. dom ( voln ` { A } ) ) | 
						
							| 10 | 7 9 | mblvon |  |-  ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( ( voln* ` { A } ) ` ( B ^m { A } ) ) ) | 
						
							| 11 |  | mblvol |  |-  ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> ( vol ` B ) = ( vol* ` B ) ) | 
						
							| 13 | 5 10 12 | 3eqtr4d |  |-  ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( vol ` B ) ) |