Step |
Hyp |
Ref |
Expression |
1 |
|
vonvol.a |
|- ( ph -> A e. V ) |
2 |
|
vonvol.b |
|- ( ph -> B e. dom vol ) |
3 |
|
mblss |
|- ( B e. dom vol -> B C_ RR ) |
4 |
2 3
|
syl |
|- ( ph -> B C_ RR ) |
5 |
1 4
|
ovnovol |
|- ( ph -> ( ( voln* ` { A } ) ` ( B ^m { A } ) ) = ( vol* ` B ) ) |
6 |
|
snfi |
|- { A } e. Fin |
7 |
6
|
a1i |
|- ( ph -> { A } e. Fin ) |
8 |
1 4
|
vonvolmbl |
|- ( ph -> ( ( B ^m { A } ) e. dom ( voln ` { A } ) <-> B e. dom vol ) ) |
9 |
2 8
|
mpbird |
|- ( ph -> ( B ^m { A } ) e. dom ( voln ` { A } ) ) |
10 |
7 9
|
mblvon |
|- ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( ( voln* ` { A } ) ` ( B ^m { A } ) ) ) |
11 |
|
mblvol |
|- ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) ) |
12 |
2 11
|
syl |
|- ( ph -> ( vol ` B ) = ( vol* ` B ) ) |
13 |
5 10 12
|
3eqtr4d |
|- ( ph -> ( ( voln ` { A } ) ` ( B ^m { A } ) ) = ( vol ` B ) ) |