Step |
Hyp |
Ref |
Expression |
1 |
|
vonvol.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
vonvol.b |
⊢ ( 𝜑 → 𝐵 ∈ dom vol ) |
3 |
|
mblss |
⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
5 |
1 4
|
ovnovol |
⊢ ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) ) |
6 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
7 |
6
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ Fin ) |
8 |
1 4
|
vonvolmbl |
⊢ ( 𝜑 → ( ( 𝐵 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝐵 ∈ dom vol ) ) |
9 |
2 8
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ) |
10 |
7 9
|
mblvon |
⊢ ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) ) |
11 |
|
mblvol |
⊢ ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) |
13 |
5 10 12
|
3eqtr4d |
⊢ ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = ( vol ‘ 𝐵 ) ) |