Metamath Proof Explorer


Theorem vonvol

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol.a ( 𝜑𝐴𝑉 )
vonvol.b ( 𝜑𝐵 ∈ dom vol )
Assertion vonvol ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( vol ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 vonvol.a ( 𝜑𝐴𝑉 )
2 vonvol.b ( 𝜑𝐵 ∈ dom vol )
3 mblss ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ )
4 2 3 syl ( 𝜑𝐵 ⊆ ℝ )
5 1 4 ovnovol ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) )
6 snfi { 𝐴 } ∈ Fin
7 6 a1i ( 𝜑 → { 𝐴 } ∈ Fin )
8 1 4 vonvolmbl ( 𝜑 → ( ( 𝐵m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝐵 ∈ dom vol ) )
9 2 8 mpbird ( 𝜑 → ( 𝐵m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) )
10 7 9 mblvon ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) )
11 mblvol ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) )
12 2 11 syl ( 𝜑 → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) )
13 5 10 12 3eqtr4d ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵m { 𝐴 } ) ) = ( vol ‘ 𝐵 ) )