| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvol.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | vonvol.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  vol ) | 
						
							| 3 |  | mblss | ⊢ ( 𝐵  ∈  dom  vol  →  𝐵  ⊆  ℝ ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 5 | 1 4 | ovnovol | ⊢ ( 𝜑  →  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵  ↑m  { 𝐴 } ) )  =  ( vol* ‘ 𝐵 ) ) | 
						
							| 6 |  | snfi | ⊢ { 𝐴 }  ∈  Fin | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  { 𝐴 }  ∈  Fin ) | 
						
							| 8 | 1 4 | vonvolmbl | ⊢ ( 𝜑  →  ( ( 𝐵  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } )  ↔  𝐵  ∈  dom  vol ) ) | 
						
							| 9 | 2 8 | mpbird | ⊢ ( 𝜑  →  ( 𝐵  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } ) ) | 
						
							| 10 | 7 9 | mblvon | ⊢ ( 𝜑  →  ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵  ↑m  { 𝐴 } ) )  =  ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵  ↑m  { 𝐴 } ) ) ) | 
						
							| 11 |  | mblvol | ⊢ ( 𝐵  ∈  dom  vol  →  ( vol ‘ 𝐵 )  =  ( vol* ‘ 𝐵 ) ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  ( vol ‘ 𝐵 )  =  ( vol* ‘ 𝐵 ) ) | 
						
							| 13 | 5 10 12 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( voln ‘ { 𝐴 } ) ‘ ( 𝐵  ↑m  { 𝐴 } ) )  =  ( vol ‘ 𝐵 ) ) |