Step |
Hyp |
Ref |
Expression |
1 |
|
vonvolmbl2.f |
⊢ Ⅎ 𝑓 𝑌 |
2 |
|
vonvolmbl2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
vonvolmbl2.x |
⊢ ( 𝜑 → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) ) |
4 |
|
vonvolmbl2.y |
⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
5 |
1 2 3 4
|
ssmapsn |
⊢ ( 𝜑 → 𝑋 = ( 𝑌 ↑m { 𝐴 } ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝜑 → ( 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ↔ ( 𝑌 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ) ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ 𝑋 ) |
9 |
7 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) ) |
10 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) → 𝑓 : { 𝐴 } ⟶ ℝ ) |
11 |
|
frn |
⊢ ( 𝑓 : { 𝐴 } ⟶ ℝ → ran 𝑓 ⊆ ℝ ) |
12 |
9 10 11
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ran 𝑓 ⊆ ℝ ) |
13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
14 |
|
iunss |
⊢ ( ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
16 |
4 15
|
eqsstrid |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
17 |
2 16
|
vonvolmbl |
⊢ ( 𝜑 → ( ( 𝑌 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) ) |
18 |
6 17
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) ) |