Metamath Proof Explorer


Theorem vonvolmbl2

Description: A subset X of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection Y on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvolmbl2.f 𝑓 𝑌
vonvolmbl2.a ( 𝜑𝐴𝑉 )
vonvolmbl2.x ( 𝜑𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) )
vonvolmbl2.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion vonvolmbl2 ( 𝜑 → ( 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) )

Proof

Step Hyp Ref Expression
1 vonvolmbl2.f 𝑓 𝑌
2 vonvolmbl2.a ( 𝜑𝐴𝑉 )
3 vonvolmbl2.x ( 𝜑𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) )
4 vonvolmbl2.y 𝑌 = 𝑓𝑋 ran 𝑓
5 1 2 3 4 ssmapsn ( 𝜑𝑋 = ( 𝑌m { 𝐴 } ) )
6 5 eleq1d ( 𝜑 → ( 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ↔ ( 𝑌m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ) )
7 3 adantr ( ( 𝜑𝑓𝑋 ) → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) )
8 simpr ( ( 𝜑𝑓𝑋 ) → 𝑓𝑋 )
9 7 8 sseldd ( ( 𝜑𝑓𝑋 ) → 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) )
10 elmapi ( 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) → 𝑓 : { 𝐴 } ⟶ ℝ )
11 frn ( 𝑓 : { 𝐴 } ⟶ ℝ → ran 𝑓 ⊆ ℝ )
12 9 10 11 3syl ( ( 𝜑𝑓𝑋 ) → ran 𝑓 ⊆ ℝ )
13 12 ralrimiva ( 𝜑 → ∀ 𝑓𝑋 ran 𝑓 ⊆ ℝ )
14 iunss ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀ 𝑓𝑋 ran 𝑓 ⊆ ℝ )
15 13 14 sylibr ( 𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ )
16 4 15 eqsstrid ( 𝜑𝑌 ⊆ ℝ )
17 2 16 vonvolmbl ( 𝜑 → ( ( 𝑌m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) )
18 6 17 bitrd ( 𝜑 → ( 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) )