| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvolmbl2.f | ⊢ Ⅎ 𝑓 𝑌 | 
						
							| 2 |  | vonvolmbl2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | vonvolmbl2.x | ⊢ ( 𝜑  →  𝑋  ⊆  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 4 |  | vonvolmbl2.y | ⊢ 𝑌  =  ∪  𝑓  ∈  𝑋 ran  𝑓 | 
						
							| 5 | 1 2 3 4 | ssmapsn | ⊢ ( 𝜑  →  𝑋  =  ( 𝑌  ↑m  { 𝐴 } ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( 𝜑  →  ( 𝑋  ∈  dom  ( voln ‘ { 𝐴 } )  ↔  ( 𝑌  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } ) ) ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑋  ⊆  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓  ∈  𝑋 ) | 
						
							| 9 | 7 8 | sseldd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓  ∈  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 10 |  | elmapi | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  { 𝐴 } )  →  𝑓 : { 𝐴 } ⟶ ℝ ) | 
						
							| 11 |  | frn | ⊢ ( 𝑓 : { 𝐴 } ⟶ ℝ  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 12 | 9 10 11 | 3syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 14 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝜑  →  ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 16 | 4 15 | eqsstrid | ⊢ ( 𝜑  →  𝑌  ⊆  ℝ ) | 
						
							| 17 | 2 16 | vonvolmbl | ⊢ ( 𝜑  →  ( ( 𝑌  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } )  ↔  𝑌  ∈  dom  vol ) ) | 
						
							| 18 | 6 17 | bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  dom  ( voln ‘ { 𝐴 } )  ↔  𝑌  ∈  dom  vol ) ) |