| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonvol2.f | ⊢ Ⅎ 𝑓 𝑌 | 
						
							| 2 |  | vonvol2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | vonvol2.x | ⊢ ( 𝜑  →  𝑋  ∈  dom  ( voln ‘ { 𝐴 } ) ) | 
						
							| 4 |  | vonvol2.y | ⊢ 𝑌  =  ∪  𝑓  ∈  𝑋 ran  𝑓 | 
						
							| 5 |  | snfi | ⊢ { 𝐴 }  ∈  Fin | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  { 𝐴 }  ∈  Fin ) | 
						
							| 7 | 6 3 | vonmblss2 | ⊢ ( 𝜑  →  𝑋  ⊆  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 8 | 1 2 7 4 | ssmapsn | ⊢ ( 𝜑  →  𝑋  =  ( 𝑌  ↑m  { 𝐴 } ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  ( 𝑌  ↑m  { 𝐴 } )  =  𝑋 ) | 
						
							| 10 | 9 3 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑌  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } ) ) | 
						
							| 11 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑋  ⊆  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓  ∈  𝑋 ) | 
						
							| 13 | 11 12 | sseldd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  𝑓  ∈  ( ℝ  ↑m  { 𝐴 } ) ) | 
						
							| 14 |  | elmapi | ⊢ ( 𝑓  ∈  ( ℝ  ↑m  { 𝐴 } )  →  𝑓 : { 𝐴 } ⟶ ℝ ) | 
						
							| 15 |  | frn | ⊢ ( 𝑓 : { 𝐴 } ⟶ ℝ  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑋 )  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 18 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( 𝜑  →  ∪  𝑓  ∈  𝑋 ran  𝑓  ⊆  ℝ ) | 
						
							| 20 | 4 19 | eqsstrid | ⊢ ( 𝜑  →  𝑌  ⊆  ℝ ) | 
						
							| 21 | 2 20 | vonvolmbl | ⊢ ( 𝜑  →  ( ( 𝑌  ↑m  { 𝐴 } )  ∈  dom  ( voln ‘ { 𝐴 } )  ↔  𝑌  ∈  dom  vol ) ) | 
						
							| 22 | 10 21 | mpbid | ⊢ ( 𝜑  →  𝑌  ∈  dom  vol ) | 
						
							| 23 | 2 22 | vonvol | ⊢ ( 𝜑  →  ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌  ↑m  { 𝐴 } ) )  =  ( vol ‘ 𝑌 ) ) | 
						
							| 24 | 9 | eqcomd | ⊢ ( 𝜑  →  𝑋  =  ( 𝑌  ↑m  { 𝐴 } ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 )  =  ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌  ↑m  { 𝐴 } ) ) ) | 
						
							| 26 |  | eqidd | ⊢ ( 𝜑  →  ( vol ‘ 𝑌 )  =  ( vol ‘ 𝑌 ) ) | 
						
							| 27 | 23 25 26 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 )  =  ( vol ‘ 𝑌 ) ) |