Metamath Proof Explorer


Theorem vonvol2

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol2.f 𝑓 𝑌
vonvol2.a ( 𝜑𝐴𝑉 )
vonvol2.x ( 𝜑𝑋 ∈ dom ( voln ‘ { 𝐴 } ) )
vonvol2.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion vonvol2 ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 ) = ( vol ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 vonvol2.f 𝑓 𝑌
2 vonvol2.a ( 𝜑𝐴𝑉 )
3 vonvol2.x ( 𝜑𝑋 ∈ dom ( voln ‘ { 𝐴 } ) )
4 vonvol2.y 𝑌 = 𝑓𝑋 ran 𝑓
5 snfi { 𝐴 } ∈ Fin
6 5 a1i ( 𝜑 → { 𝐴 } ∈ Fin )
7 6 3 vonmblss2 ( 𝜑𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) )
8 1 2 7 4 ssmapsn ( 𝜑𝑋 = ( 𝑌m { 𝐴 } ) )
9 8 eqcomd ( 𝜑 → ( 𝑌m { 𝐴 } ) = 𝑋 )
10 9 3 eqeltrd ( 𝜑 → ( 𝑌m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) )
11 7 adantr ( ( 𝜑𝑓𝑋 ) → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) )
12 simpr ( ( 𝜑𝑓𝑋 ) → 𝑓𝑋 )
13 11 12 sseldd ( ( 𝜑𝑓𝑋 ) → 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) )
14 elmapi ( 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) → 𝑓 : { 𝐴 } ⟶ ℝ )
15 frn ( 𝑓 : { 𝐴 } ⟶ ℝ → ran 𝑓 ⊆ ℝ )
16 13 14 15 3syl ( ( 𝜑𝑓𝑋 ) → ran 𝑓 ⊆ ℝ )
17 16 ralrimiva ( 𝜑 → ∀ 𝑓𝑋 ran 𝑓 ⊆ ℝ )
18 iunss ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀ 𝑓𝑋 ran 𝑓 ⊆ ℝ )
19 17 18 sylibr ( 𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ )
20 4 19 eqsstrid ( 𝜑𝑌 ⊆ ℝ )
21 2 20 vonvolmbl ( 𝜑 → ( ( 𝑌m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) )
22 10 21 mpbid ( 𝜑𝑌 ∈ dom vol )
23 2 22 vonvol ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌m { 𝐴 } ) ) = ( vol ‘ 𝑌 ) )
24 9 eqcomd ( 𝜑𝑋 = ( 𝑌m { 𝐴 } ) )
25 24 fveq2d ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 ) = ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌m { 𝐴 } ) ) )
26 eqidd ( 𝜑 → ( vol ‘ 𝑌 ) = ( vol ‘ 𝑌 ) )
27 23 25 26 3eqtr4d ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 ) = ( vol ‘ 𝑌 ) )