Step |
Hyp |
Ref |
Expression |
1 |
|
vonvol2.f |
⊢ Ⅎ 𝑓 𝑌 |
2 |
|
vonvol2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
vonvol2.x |
⊢ ( 𝜑 → 𝑋 ∈ dom ( voln ‘ { 𝐴 } ) ) |
4 |
|
vonvol2.y |
⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
5 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
6 |
5
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ Fin ) |
7 |
6 3
|
vonmblss2 |
⊢ ( 𝜑 → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) ) |
8 |
1 2 7 4
|
ssmapsn |
⊢ ( 𝜑 → 𝑋 = ( 𝑌 ↑m { 𝐴 } ) ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → ( 𝑌 ↑m { 𝐴 } ) = 𝑋 ) |
10 |
9 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑌 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑋 ⊆ ( ℝ ↑m { 𝐴 } ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ 𝑋 ) |
13 |
11 12
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) ) |
14 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℝ ↑m { 𝐴 } ) → 𝑓 : { 𝐴 } ⟶ ℝ ) |
15 |
|
frn |
⊢ ( 𝑓 : { 𝐴 } ⟶ ℝ → ran 𝑓 ⊆ ℝ ) |
16 |
13 14 15
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ran 𝑓 ⊆ ℝ ) |
17 |
16
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
18 |
|
iunss |
⊢ ( ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ) |
20 |
4 19
|
eqsstrid |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
21 |
2 20
|
vonvolmbl |
⊢ ( 𝜑 → ( ( 𝑌 ↑m { 𝐴 } ) ∈ dom ( voln ‘ { 𝐴 } ) ↔ 𝑌 ∈ dom vol ) ) |
22 |
10 21
|
mpbid |
⊢ ( 𝜑 → 𝑌 ∈ dom vol ) |
23 |
2 22
|
vonvol |
⊢ ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌 ↑m { 𝐴 } ) ) = ( vol ‘ 𝑌 ) ) |
24 |
9
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ( 𝑌 ↑m { 𝐴 } ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 ) = ( ( voln ‘ { 𝐴 } ) ‘ ( 𝑌 ↑m { 𝐴 } ) ) ) |
26 |
|
eqidd |
⊢ ( 𝜑 → ( vol ‘ 𝑌 ) = ( vol ‘ 𝑌 ) ) |
27 |
23 25 26
|
3eqtr4d |
⊢ ( 𝜑 → ( ( voln ‘ { 𝐴 } ) ‘ 𝑋 ) = ( vol ‘ 𝑌 ) ) |