Metamath Proof Explorer


Theorem vonvol2

Description: The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonvol2.f _ f Y
vonvol2.a φ A V
vonvol2.x φ X dom voln A
vonvol2.y Y = f X ran f
Assertion vonvol2 φ voln A X = vol Y

Proof

Step Hyp Ref Expression
1 vonvol2.f _ f Y
2 vonvol2.a φ A V
3 vonvol2.x φ X dom voln A
4 vonvol2.y Y = f X ran f
5 snfi A Fin
6 5 a1i φ A Fin
7 6 3 vonmblss2 φ X A
8 1 2 7 4 ssmapsn φ X = Y A
9 8 eqcomd φ Y A = X
10 9 3 eqeltrd φ Y A dom voln A
11 7 adantr φ f X X A
12 simpr φ f X f X
13 11 12 sseldd φ f X f A
14 elmapi f A f : A
15 frn f : A ran f
16 13 14 15 3syl φ f X ran f
17 16 ralrimiva φ f X ran f
18 iunss f X ran f f X ran f
19 17 18 sylibr φ f X ran f
20 4 19 eqsstrid φ Y
21 2 20 vonvolmbl φ Y A dom voln A Y dom vol
22 10 21 mpbid φ Y dom vol
23 2 22 vonvol φ voln A Y A = vol Y
24 9 eqcomd φ X = Y A
25 24 fveq2d φ voln A X = voln A Y A
26 eqidd φ vol Y = vol Y
27 23 25 26 3eqtr4d φ voln A X = vol Y