Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonvolmbl.a | |
|
vonvolmbl.b | |
||
Assertion | vonvolmbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonvolmbl.a | |
|
2 | vonvolmbl.b | |
|
3 | vex | |
|
4 | 3 | a1i | |
5 | reex | |
|
6 | 5 | a1i | |
7 | 6 2 | ssexd | |
8 | snfi | |
|
9 | 8 | a1i | |
10 | 9 | elexd | |
11 | 4 7 10 | inmap | |
12 | 11 | eqcomd | |
13 | 12 | fveq2d | |
14 | 4 7 1 | difmapsn | |
15 | 14 | eqcomd | |
16 | 15 | fveq2d | |
17 | 13 16 | oveq12d | |
18 | 17 | ad2antrr | |
19 | ovexd | |
|
20 | 5 | a1i | |
21 | elpwi | |
|
22 | mapss | |
|
23 | 20 21 22 | syl2anc | |
24 | 19 23 | elpwd | |
25 | 24 | adantl | |
26 | simpl | |
|
27 | ineq1 | |
|
28 | 27 | fveq2d | |
29 | difeq1 | |
|
30 | 29 | fveq2d | |
31 | 28 30 | oveq12d | |
32 | fveq2 | |
|
33 | 31 32 | eqeq12d | |
34 | 33 | rspcva | |
35 | 25 26 34 | syl2anc | |
36 | 35 | adantll | |
37 | eqidd | |
|
38 | 18 36 37 | 3eqtrd | |
39 | 38 | eqcomd | |
40 | 1 | adantr | |
41 | 21 | adantl | |
42 | 40 41 | ovnovol | |
43 | 42 | adantlr | |
44 | 41 | ssinss1d | |
45 | 40 44 | ovnovol | |
46 | 41 | ssdifssd | |
47 | 40 46 | ovnovol | |
48 | 45 47 | oveq12d | |
49 | 48 | adantlr | |
50 | 39 43 49 | 3eqtr3d | |
51 | 50 | ralrimiva | |
52 | 51 | ex | |
53 | 1 | ad2antrr | |
54 | 2 | ad2antrr | |
55 | simplr | |
|
56 | elpwi | |
|
57 | 56 | adantl | |
58 | rneq | |
|
59 | 58 | cbviunv | |
60 | 53 54 55 57 59 | vonvolmbllem | |
61 | 60 | ralrimiva | |
62 | 61 | ex | |
63 | 52 62 | impbid | |
64 | mapss | |
|
65 | 6 2 64 | syl2anc | |
66 | 9 | isvonmbl | |
67 | 65 66 | mpbirand | |
68 | ismbl4 | |
|
69 | 68 | a1i | |
70 | 2 69 | mpbirand | |
71 | 63 67 70 | 3bitr4d | |