| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonvolmbl.a |
|
| 2 |
|
vonvolmbl.b |
|
| 3 |
|
vex |
|
| 4 |
3
|
a1i |
|
| 5 |
|
reex |
|
| 6 |
5
|
a1i |
|
| 7 |
6 2
|
ssexd |
|
| 8 |
|
snfi |
|
| 9 |
8
|
a1i |
|
| 10 |
9
|
elexd |
|
| 11 |
4 7 10
|
inmap |
|
| 12 |
11
|
eqcomd |
|
| 13 |
12
|
fveq2d |
|
| 14 |
4 7 1
|
difmapsn |
|
| 15 |
14
|
eqcomd |
|
| 16 |
15
|
fveq2d |
|
| 17 |
13 16
|
oveq12d |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
ovexd |
|
| 20 |
5
|
a1i |
|
| 21 |
|
elpwi |
|
| 22 |
|
mapss |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
19 23
|
elpwd |
|
| 25 |
24
|
adantl |
|
| 26 |
|
simpl |
|
| 27 |
|
ineq1 |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
difeq1 |
|
| 30 |
29
|
fveq2d |
|
| 31 |
28 30
|
oveq12d |
|
| 32 |
|
fveq2 |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
33
|
rspcva |
|
| 35 |
25 26 34
|
syl2anc |
|
| 36 |
35
|
adantll |
|
| 37 |
|
eqidd |
|
| 38 |
18 36 37
|
3eqtrd |
|
| 39 |
38
|
eqcomd |
|
| 40 |
1
|
adantr |
|
| 41 |
21
|
adantl |
|
| 42 |
40 41
|
ovnovol |
|
| 43 |
42
|
adantlr |
|
| 44 |
41
|
ssinss1d |
|
| 45 |
40 44
|
ovnovol |
|
| 46 |
41
|
ssdifssd |
|
| 47 |
40 46
|
ovnovol |
|
| 48 |
45 47
|
oveq12d |
|
| 49 |
48
|
adantlr |
|
| 50 |
39 43 49
|
3eqtr3d |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
51
|
ex |
|
| 53 |
1
|
ad2antrr |
|
| 54 |
2
|
ad2antrr |
|
| 55 |
|
simplr |
|
| 56 |
|
elpwi |
|
| 57 |
56
|
adantl |
|
| 58 |
|
rneq |
|
| 59 |
58
|
cbviunv |
|
| 60 |
53 54 55 57 59
|
vonvolmbllem |
|
| 61 |
60
|
ralrimiva |
|
| 62 |
61
|
ex |
|
| 63 |
52 62
|
impbid |
|
| 64 |
|
mapss |
|
| 65 |
6 2 64
|
syl2anc |
|
| 66 |
9
|
isvonmbl |
|
| 67 |
65 66
|
mpbirand |
|
| 68 |
|
ismbl4 |
|
| 69 |
68
|
a1i |
|
| 70 |
2 69
|
mpbirand |
|
| 71 |
63 67 70
|
3bitr4d |
|