Metamath Proof Explorer


Theorem inmap

Description: Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses inmap.a φAV
inmap.b φBW
inmap.c φCZ
Assertion inmap φACBC=ABC

Proof

Step Hyp Ref Expression
1 inmap.a φAV
2 inmap.b φBW
3 inmap.c φCZ
4 elinel1 fACBCfAC
5 elmapi fACf:CA
6 4 5 syl fACBCf:CA
7 elinel2 fACBCfBC
8 elmapi fBCf:CB
9 7 8 syl fACBCf:CB
10 6 9 jca fACBCf:CAf:CB
11 fin f:CABf:CAf:CB
12 10 11 sylibr fACBCf:CAB
13 12 adantl φfACBCf:CAB
14 inss1 ABA
15 14 a1i φABA
16 1 15 ssexd φABV
17 16 3 elmapd φfABCf:CAB
18 17 adantr φfACBCfABCf:CAB
19 13 18 mpbird φfACBCfABC
20 19 ralrimiva φfACBCfABC
21 dfss3 ACBCABCfACBCfABC
22 20 21 sylibr φACBCABC
23 mapss AVABAABCAC
24 1 15 23 syl2anc φABCAC
25 inss2 ABB
26 25 a1i φABB
27 mapss BWABBABCBC
28 2 26 27 syl2anc φABCBC
29 24 28 ssind φABCACBC
30 22 29 eqssd φACBC=ABC