Metamath Proof Explorer


Theorem ovnovol

Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovol.a φ A V
ovnovol.b φ B
Assertion ovnovol φ voln* A B A = vol * B

Proof

Step Hyp Ref Expression
1 ovnovol.a φ A V
2 ovnovol.b φ B
3 eqid z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k = z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
4 eqeq1 w = z w = sum^ vol . f z = sum^ vol . f
5 4 anbi2d w = z B ran . f w = sum^ vol . f B ran . f z = sum^ vol . f
6 5 rexbidv w = z f 2 B ran . f w = sum^ vol . f f 2 B ran . f z = sum^ vol . f
7 6 cbvrabv w * | f 2 B ran . f w = sum^ vol . f = z * | f 2 B ran . f z = sum^ vol . f
8 1 2 3 7 ovnovollem3 φ voln* A B A = vol * B