Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovollem3.a |
|
2 |
|
ovnovollem3.b |
|
3 |
|
ovnovollem3.m |
|
4 |
|
ovnovollem3.n |
|
5 |
1
|
snn0d |
|
6 |
5
|
neneqd |
|
7 |
6
|
iffalsed |
|
8 |
|
snfi |
|
9 |
8
|
a1i |
|
10 |
|
reex |
|
11 |
10
|
a1i |
|
12 |
|
mapss |
|
13 |
11 2 12
|
syl2anc |
|
14 |
9 13 3
|
ovnval2 |
|
15 |
2 4
|
ovolval5 |
|
16 |
1
|
ad2antrr |
|
17 |
|
simplr |
|
18 |
|
fveq2 |
|
19 |
18
|
opeq2d |
|
20 |
19
|
sneqd |
|
21 |
20
|
cbvmptv |
|
22 |
|
simprl |
|
23 |
11 2
|
ssexd |
|
24 |
23
|
adantr |
|
25 |
24
|
adantr |
|
26 |
|
simprr |
|
27 |
16 17 21 22 25 26
|
ovnovollem1 |
|
28 |
27
|
rexlimdva2 |
|
29 |
1
|
3ad2ant1 |
|
30 |
23
|
3ad2ant1 |
|
31 |
|
simp2 |
|
32 |
|
simp3l |
|
33 |
|
fveq2 |
|
34 |
33
|
coeq2d |
|
35 |
34
|
fveq1d |
|
36 |
35
|
ixpeq2dv |
|
37 |
|
fveq2 |
|
38 |
37
|
cbvixpv |
|
39 |
38
|
a1i |
|
40 |
36 39
|
eqtrd |
|
41 |
40
|
cbviunv |
|
42 |
41
|
sseq2i |
|
43 |
42
|
biimpi |
|
44 |
32 43
|
syl |
|
45 |
|
simp3r |
|
46 |
35
|
fveq2d |
|
47 |
46
|
prodeq2ad |
|
48 |
37
|
fveq2d |
|
49 |
48
|
cbvprodv |
|
50 |
49
|
a1i |
|
51 |
47 50
|
eqtrd |
|
52 |
51
|
cbvmptv |
|
53 |
52
|
fveq2i |
|
54 |
53
|
eqeq2i |
|
55 |
54
|
biimpi |
|
56 |
45 55
|
syl |
|
57 |
|
fveq2 |
|
58 |
57
|
fveq1d |
|
59 |
58
|
cbvmptv |
|
60 |
29 30 31 44 56 59
|
ovnovollem2 |
|
61 |
60
|
3exp |
|
62 |
61
|
rexlimdv |
|
63 |
28 62
|
impbid |
|
64 |
63
|
rabbidv |
|
65 |
4
|
a1i |
|
66 |
3
|
a1i |
|
67 |
64 65 66
|
3eqtr4d |
|
68 |
67
|
infeq1d |
|
69 |
15 68
|
eqtrd |
|
70 |
7 14 69
|
3eqtr4d |
|