Metamath Proof Explorer


Theorem ovnovollem3

Description: The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem3.a φ A V
ovnovollem3.b φ B
ovnovollem3.m M = z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
ovnovollem3.n N = z * | f 2 B ran . f z = sum^ vol . f
Assertion ovnovollem3 φ voln* A B A = vol * B

Proof

Step Hyp Ref Expression
1 ovnovollem3.a φ A V
2 ovnovollem3.b φ B
3 ovnovollem3.m M = z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
4 ovnovollem3.n N = z * | f 2 B ran . f z = sum^ vol . f
5 1 snn0d φ A
6 5 neneqd φ ¬ A =
7 6 iffalsed φ if A = 0 sup M * < = sup M * <
8 snfi A Fin
9 8 a1i φ A Fin
10 reex V
11 10 a1i φ V
12 mapss V B B A A
13 11 2 12 syl2anc φ B A A
14 9 13 3 ovnval2 φ voln* A B A = if A = 0 sup M * <
15 2 4 ovolval5 φ vol * B = sup N * <
16 1 ad2antrr φ f 2 B ran . f z = sum^ vol . f A V
17 simplr φ f 2 B ran . f z = sum^ vol . f f 2
18 fveq2 n = j f n = f j
19 18 opeq2d n = j A f n = A f j
20 19 sneqd n = j A f n = A f j
21 20 cbvmptv n A f n = j A f j
22 simprl φ f 2 B ran . f z = sum^ vol . f B ran . f
23 11 2 ssexd φ B V
24 23 adantr φ f 2 B V
25 24 adantr φ f 2 B ran . f z = sum^ vol . f B V
26 simprr φ f 2 B ran . f z = sum^ vol . f z = sum^ vol . f
27 16 17 21 22 25 26 ovnovollem1 φ f 2 B ran . f z = sum^ vol . f i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
28 27 rexlimdva2 φ f 2 B ran . f z = sum^ vol . f i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
29 1 3ad2ant1 φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k A V
30 23 3ad2ant1 φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k B V
31 simp2 φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k i 2 A
32 simp3l φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k B A j k A . i j k
33 fveq2 j = n i j = i n
34 33 coeq2d j = n . i j = . i n
35 34 fveq1d j = n . i j k = . i n k
36 35 ixpeq2dv j = n k A . i j k = k A . i n k
37 fveq2 k = l . i n k = . i n l
38 37 cbvixpv k A . i n k = l A . i n l
39 38 a1i j = n k A . i n k = l A . i n l
40 36 39 eqtrd j = n k A . i j k = l A . i n l
41 40 cbviunv j k A . i j k = n l A . i n l
42 41 sseq2i B A j k A . i j k B A n l A . i n l
43 42 biimpi B A j k A . i j k B A n l A . i n l
44 32 43 syl φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k B A n l A . i n l
45 simp3r φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k z = sum^ j k A vol . i j k
46 35 fveq2d j = n vol . i j k = vol . i n k
47 46 prodeq2ad j = n k A vol . i j k = k A vol . i n k
48 37 fveq2d k = l vol . i n k = vol . i n l
49 48 cbvprodv k A vol . i n k = l A vol . i n l
50 49 a1i j = n k A vol . i n k = l A vol . i n l
51 47 50 eqtrd j = n k A vol . i j k = l A vol . i n l
52 51 cbvmptv j k A vol . i j k = n l A vol . i n l
53 52 fveq2i sum^ j k A vol . i j k = sum^ n l A vol . i n l
54 53 eqeq2i z = sum^ j k A vol . i j k z = sum^ n l A vol . i n l
55 54 biimpi z = sum^ j k A vol . i j k z = sum^ n l A vol . i n l
56 45 55 syl φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k z = sum^ n l A vol . i n l
57 fveq2 m = n i m = i n
58 57 fveq1d m = n i m A = i n A
59 58 cbvmptv m i m A = n i n A
60 29 30 31 44 56 59 ovnovollem2 φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k f 2 B ran . f z = sum^ vol . f
61 60 3exp φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k f 2 B ran . f z = sum^ vol . f
62 61 rexlimdv φ i 2 A B A j k A . i j k z = sum^ j k A vol . i j k f 2 B ran . f z = sum^ vol . f
63 28 62 impbid φ f 2 B ran . f z = sum^ vol . f i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
64 63 rabbidv φ z * | f 2 B ran . f z = sum^ vol . f = z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
65 4 a1i φ N = z * | f 2 B ran . f z = sum^ vol . f
66 3 a1i φ M = z * | i 2 A B A j k A . i j k z = sum^ j k A vol . i j k
67 64 65 66 3eqtr4d φ N = M
68 67 infeq1d φ sup N * < = sup M * <
69 15 68 eqtrd φ vol * B = sup M * <
70 7 14 69 3eqtr4d φ voln* A B A = vol * B