Step |
Hyp |
Ref |
Expression |
1 |
|
ovnovollem3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ovnovollem3.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
3 |
|
ovnovollem3.m |
⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
4 |
|
ovnovollem3.n |
⊢ 𝑁 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
5 |
1
|
snn0d |
⊢ ( 𝜑 → { 𝐴 } ≠ ∅ ) |
6 |
5
|
neneqd |
⊢ ( 𝜑 → ¬ { 𝐴 } = ∅ ) |
7 |
6
|
iffalsed |
⊢ ( 𝜑 → if ( { 𝐴 } = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) = inf ( 𝑀 , ℝ* , < ) ) |
8 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ Fin ) |
10 |
|
reex |
⊢ ℝ ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
12 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ 𝐵 ⊆ ℝ ) → ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ℝ ↑m { 𝐴 } ) ) |
13 |
11 2 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m { 𝐴 } ) ⊆ ( ℝ ↑m { 𝐴 } ) ) |
14 |
9 13 3
|
ovnval2 |
⊢ ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = if ( { 𝐴 } = ∅ , 0 , inf ( 𝑀 , ℝ* , < ) ) ) |
15 |
2 4
|
ovolval5 |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = inf ( 𝑁 , ℝ* , < ) ) |
16 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐴 ∈ 𝑉 ) |
17 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) |
18 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑗 ) ) |
19 |
18
|
opeq2d |
⊢ ( 𝑛 = 𝑗 → 〈 𝐴 , ( 𝑓 ‘ 𝑛 ) 〉 = 〈 𝐴 , ( 𝑓 ‘ 𝑗 ) 〉 ) |
20 |
19
|
sneqd |
⊢ ( 𝑛 = 𝑗 → { 〈 𝐴 , ( 𝑓 ‘ 𝑛 ) 〉 } = { 〈 𝐴 , ( 𝑓 ‘ 𝑗 ) 〉 } ) |
21 |
20
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ { 〈 𝐴 , ( 𝑓 ‘ 𝑛 ) 〉 } ) = ( 𝑗 ∈ ℕ ↦ { 〈 𝐴 , ( 𝑓 ‘ 𝑗 ) 〉 } ) |
22 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ) |
23 |
11 2
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) → 𝐵 ∈ V ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝐵 ∈ V ) |
26 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) |
27 |
16 17 21 22 25 26
|
ovnovollem1 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) ∧ ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
28 |
27
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
29 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝐴 ∈ 𝑉 ) |
30 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝐵 ∈ V ) |
31 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ) |
32 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑖 ‘ 𝑗 ) = ( 𝑖 ‘ 𝑛 ) ) |
34 |
33
|
coeq2d |
⊢ ( 𝑗 = 𝑛 → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ) |
35 |
34
|
fveq1d |
⊢ ( 𝑗 = 𝑛 → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) |
36 |
35
|
ixpeq2dv |
⊢ ( 𝑗 = 𝑛 → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
38 |
37
|
cbvixpv |
⊢ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) = X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) |
39 |
38
|
a1i |
⊢ ( 𝑗 = 𝑛 → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) = X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
40 |
36 39
|
eqtrd |
⊢ ( 𝑗 = 𝑛 → X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
41 |
40
|
cbviunv |
⊢ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑛 ∈ ℕ X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) |
42 |
41
|
sseq2i |
⊢ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑛 ∈ ℕ X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
43 |
42
|
biimpi |
⊢ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) → ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑛 ∈ ℕ X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
44 |
32 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑛 ∈ ℕ X 𝑙 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
45 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
46 |
35
|
fveq2d |
⊢ ( 𝑗 = 𝑛 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) ) |
47 |
46
|
prodeq2ad |
⊢ ( 𝑗 = 𝑛 → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) ) |
48 |
37
|
fveq2d |
⊢ ( 𝑘 = 𝑙 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) |
49 |
48
|
cbvprodv |
⊢ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) = ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) |
50 |
49
|
a1i |
⊢ ( 𝑗 = 𝑛 → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑘 ) ) = ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) |
51 |
47 50
|
eqtrd |
⊢ ( 𝑗 = 𝑛 → ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) |
52 |
51
|
cbvmptv |
⊢ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) |
53 |
52
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) ) |
54 |
53
|
eqeq2i |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑧 = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) ) ) |
55 |
54
|
biimpi |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) → 𝑧 = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) ) ) |
56 |
45 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → 𝑧 = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ∏ 𝑙 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑛 ) ) ‘ 𝑙 ) ) ) ) ) |
57 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑖 ‘ 𝑚 ) = ( 𝑖 ‘ 𝑛 ) ) |
58 |
57
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑖 ‘ 𝑚 ) ‘ 𝐴 ) = ( ( 𝑖 ‘ 𝑛 ) ‘ 𝐴 ) ) |
59 |
58
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ‘ 𝑚 ) ‘ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑖 ‘ 𝑛 ) ‘ 𝐴 ) ) |
60 |
29 30 31 44 56 59
|
ovnovollem2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ∧ ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) |
61 |
60
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) → ( ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) ) |
62 |
61
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) → ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ) ) |
63 |
28 62
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
64 |
63
|
rabbidv |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
65 |
4
|
a1i |
⊢ ( 𝜑 → 𝑁 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } ) |
66 |
3
|
a1i |
⊢ ( 𝜑 → 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m { 𝐴 } ) ↑m ℕ ) ( ( 𝐵 ↑m { 𝐴 } ) ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ { 𝐴 } ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ { 𝐴 } ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
67 |
64 65 66
|
3eqtr4d |
⊢ ( 𝜑 → 𝑁 = 𝑀 ) |
68 |
67
|
infeq1d |
⊢ ( 𝜑 → inf ( 𝑁 , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
69 |
15 68
|
eqtrd |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = inf ( 𝑀 , ℝ* , < ) ) |
70 |
7 14 69
|
3eqtr4d |
⊢ ( 𝜑 → ( ( voln* ‘ { 𝐴 } ) ‘ ( 𝐵 ↑m { 𝐴 } ) ) = ( vol* ‘ 𝐵 ) ) |