| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval5.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | ovolval5.m | ⊢ 𝑀  =  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( [,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  [,) )  ∘  𝑓 ) ) ) } | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  ↔  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) ) | 
						
							| 4 | 3 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) ) ) | 
						
							| 6 |  | coeq2 | ⊢ ( 𝑔  =  𝑓  →  ( (,)  ∘  𝑔 )  =  ( (,)  ∘  𝑓 ) ) | 
						
							| 7 | 6 | rneqd | ⊢ ( 𝑔  =  𝑓  →  ran  ( (,)  ∘  𝑔 )  =  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 8 | 7 | unieqd | ⊢ ( 𝑔  =  𝑓  →  ∪  ran  ( (,)  ∘  𝑔 )  =  ∪  ran  ( (,)  ∘  𝑓 ) ) | 
						
							| 9 | 8 | sseq2d | ⊢ ( 𝑔  =  𝑓  →  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ↔  𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 ) ) ) | 
						
							| 10 |  | coeq2 | ⊢ ( 𝑔  =  𝑓  →  ( ( vol  ∘  (,) )  ∘  𝑔 )  =  ( ( vol  ∘  (,) )  ∘  𝑓 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑔  =  𝑓  →  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( 𝑔  =  𝑓  →  ( 𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  ↔  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 13 | 9 12 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 14 | 13 | cbvrexvw | ⊢ ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 16 | 5 15 | bitrd | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 17 | 16 | cbvrabv | ⊢ { 𝑥  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) }  =  { 𝑦  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑦  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) } | 
						
							| 18 | 1 17 | ovolval4 | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  inf ( { 𝑥  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 19 | 11 | eqeq2d | ⊢ ( 𝑔  =  𝑓  →  ( 𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) )  ↔  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 20 | 9 19 | anbi12d | ⊢ ( 𝑔  =  𝑓  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) )  ↔  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) | 
						
							| 24 | 23 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  ↔  ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 26 | 22 25 | bitrd | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) )  ↔  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) ) ) | 
						
							| 27 | 26 | cbvrabv | ⊢ { 𝑥  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) }  =  { 𝑧  ∈  ℝ*  ∣  ∃ 𝑓  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑓 )  ∧  𝑧  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑓 ) ) ) } | 
						
							| 28 | 2 27 | ovolval5lem3 | ⊢ inf ( { 𝑥  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) } ,  ℝ* ,   <  )  =  inf ( 𝑀 ,  ℝ* ,   <  ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  inf ( { 𝑥  ∈  ℝ*  ∣  ∃ 𝑔  ∈  ( ( ℝ  ×  ℝ )  ↑m  ℕ ) ( 𝐴  ⊆  ∪  ran  ( (,)  ∘  𝑔 )  ∧  𝑥  =  ( Σ^ ‘ ( ( vol  ∘  (,) )  ∘  𝑔 ) ) ) } ,  ℝ* ,   <  )  =  inf ( 𝑀 ,  ℝ* ,   <  ) ) | 
						
							| 30 | 18 29 | eqtrd | ⊢ ( 𝜑  →  ( vol* ‘ 𝐴 )  =  inf ( 𝑀 ,  ℝ* ,   <  ) ) |