Metamath Proof Explorer


Theorem ovolval5

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5.a ( 𝜑𝐴 ⊆ ℝ )
ovolval5.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
Assertion ovolval5 ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 ovolval5.a ( 𝜑𝐴 ⊆ ℝ )
2 ovolval5.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) }
3 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) )
4 3 anbi2d ( 𝑥 = 𝑦 → ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ) )
5 4 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ) )
6 coeq2 ( 𝑔 = 𝑓 → ( (,) ∘ 𝑔 ) = ( (,) ∘ 𝑓 ) )
7 6 rneqd ( 𝑔 = 𝑓 → ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) )
8 7 unieqd ( 𝑔 = 𝑓 ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) )
9 8 sseq2d ( 𝑔 = 𝑓 → ( 𝐴 ran ( (,) ∘ 𝑔 ) ↔ 𝐴 ran ( (,) ∘ 𝑓 ) ) )
10 coeq2 ( 𝑔 = 𝑓 → ( ( vol ∘ (,) ) ∘ 𝑔 ) = ( ( vol ∘ (,) ) ∘ 𝑓 ) )
11 10 fveq2d ( 𝑔 = 𝑓 → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) )
12 11 eqeq2d ( 𝑔 = 𝑓 → ( 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
13 9 12 anbi12d ( 𝑔 = 𝑓 → ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
14 13 cbvrexvw ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
15 14 a1i ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
16 5 15 bitrd ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
17 16 cbvrabv { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
18 1 17 ovolval4 ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) )
19 11 eqeq2d ( 𝑔 = 𝑓 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
20 9 19 anbi12d ( 𝑔 = 𝑓 → ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
21 20 cbvrexvw ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
22 21 a1i ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
23 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) )
24 23 anbi2d ( 𝑥 = 𝑧 → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
25 24 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
26 22 25 bitrd ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) )
27 26 cbvrabv { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) }
28 2 27 ovolval5lem3 inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < )
29 28 a1i ( 𝜑 → inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) )
30 18 29 eqtrd ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )