Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval5.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ovolval5.m |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( [,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ [,) ) ∘ 𝑓 ) ) ) } |
3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ) ) |
5 |
4
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ) ) |
6 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( (,) ∘ 𝑔 ) = ( (,) ∘ 𝑓 ) ) |
7 |
6
|
rneqd |
⊢ ( 𝑔 = 𝑓 → ran ( (,) ∘ 𝑔 ) = ran ( (,) ∘ 𝑓 ) ) |
8 |
7
|
unieqd |
⊢ ( 𝑔 = 𝑓 → ∪ ran ( (,) ∘ 𝑔 ) = ∪ ran ( (,) ∘ 𝑓 ) ) |
9 |
8
|
sseq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
10 |
|
coeq2 |
⊢ ( 𝑔 = 𝑓 → ( ( vol ∘ (,) ) ∘ 𝑔 ) = ( ( vol ∘ (,) ) ∘ 𝑓 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑔 = 𝑓 → ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
13 |
9 12
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
14 |
13
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
15 |
14
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
16 |
5 15
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
18 |
1 17
|
ovolval4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) ) |
19 |
11
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ↔ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
20 |
9 19
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
22 |
21
|
a1i |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
23 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ↔ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
26 |
22 25
|
bitrd |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) ↔ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) ) ) |
27 |
26
|
cbvrabv |
⊢ { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑓 ) ) ) } |
28 |
2 27
|
ovolval5lem3 |
⊢ inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → inf ( { 𝑥 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = ( Σ^ ‘ ( ( vol ∘ (,) ) ∘ 𝑔 ) ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
30 |
18 29
|
eqtrd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |