Metamath Proof Explorer


Theorem ovolval5

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5.a φ A
ovolval5.m M = y * | f 2 A ran . f y = sum^ vol . f
Assertion ovolval5 φ vol * A = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval5.a φ A
2 ovolval5.m M = y * | f 2 A ran . f y = sum^ vol . f
3 eqeq1 x = y x = sum^ vol . g y = sum^ vol . g
4 3 anbi2d x = y A ran . g x = sum^ vol . g A ran . g y = sum^ vol . g
5 4 rexbidv x = y g 2 A ran . g x = sum^ vol . g g 2 A ran . g y = sum^ vol . g
6 coeq2 g = f . g = . f
7 6 rneqd g = f ran . g = ran . f
8 7 unieqd g = f ran . g = ran . f
9 8 sseq2d g = f A ran . g A ran . f
10 coeq2 g = f vol . g = vol . f
11 10 fveq2d g = f sum^ vol . g = sum^ vol . f
12 11 eqeq2d g = f y = sum^ vol . g y = sum^ vol . f
13 9 12 anbi12d g = f A ran . g y = sum^ vol . g A ran . f y = sum^ vol . f
14 13 cbvrexvw g 2 A ran . g y = sum^ vol . g f 2 A ran . f y = sum^ vol . f
15 14 a1i x = y g 2 A ran . g y = sum^ vol . g f 2 A ran . f y = sum^ vol . f
16 5 15 bitrd x = y g 2 A ran . g x = sum^ vol . g f 2 A ran . f y = sum^ vol . f
17 16 cbvrabv x * | g 2 A ran . g x = sum^ vol . g = y * | f 2 A ran . f y = sum^ vol . f
18 1 17 ovolval4 φ vol * A = sup x * | g 2 A ran . g x = sum^ vol . g * <
19 11 eqeq2d g = f x = sum^ vol . g x = sum^ vol . f
20 9 19 anbi12d g = f A ran . g x = sum^ vol . g A ran . f x = sum^ vol . f
21 20 cbvrexvw g 2 A ran . g x = sum^ vol . g f 2 A ran . f x = sum^ vol . f
22 21 a1i x = z g 2 A ran . g x = sum^ vol . g f 2 A ran . f x = sum^ vol . f
23 eqeq1 x = z x = sum^ vol . f z = sum^ vol . f
24 23 anbi2d x = z A ran . f x = sum^ vol . f A ran . f z = sum^ vol . f
25 24 rexbidv x = z f 2 A ran . f x = sum^ vol . f f 2 A ran . f z = sum^ vol . f
26 22 25 bitrd x = z g 2 A ran . g x = sum^ vol . g f 2 A ran . f z = sum^ vol . f
27 26 cbvrabv x * | g 2 A ran . g x = sum^ vol . g = z * | f 2 A ran . f z = sum^ vol . f
28 2 27 ovolval5lem3 sup x * | g 2 A ran . g x = sum^ vol . g * < = sup M * <
29 28 a1i φ sup x * | g 2 A ran . g x = sum^ vol . g * < = sup M * <
30 18 29 eqtrd φ vol * A = sup M * <