Metamath Proof Explorer


Theorem ovolval4

Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 , but here f may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4.a φA
ovolval4.m M=y*|f2Aran.fy=sum^vol.f
Assertion ovolval4 φvol*A=supM*<

Proof

Step Hyp Ref Expression
1 ovolval4.a φA
2 ovolval4.m M=y*|f2Aran.fy=sum^vol.f
3 2fveq3 k=n1stfk=1stfn
4 2fveq3 k=n2ndfk=2ndfn
5 3 4 breq12d k=n1stfk2ndfk1stfn2ndfn
6 5 4 3 ifbieq12d k=nif1stfk2ndfk2ndfk1stfk=if1stfn2ndfn2ndfn1stfn
7 3 6 opeq12d k=n1stfkif1stfk2ndfk2ndfk1stfk=1stfnif1stfn2ndfn2ndfn1stfn
8 7 cbvmptv k1stfkif1stfk2ndfk2ndfk1stfk=n1stfnif1stfn2ndfn2ndfn1stfn
9 1 2 8 ovolval4lem2 φvol*A=supM*<