Metamath Proof Explorer


Theorem ovolval4lem2

Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 , but here f is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4lem2.a φA
ovolval4lem2.m M=y*|f2Aran.fy=sum^vol.f
ovolval4lem2.g G=n1stfnif1stfn2ndfn2ndfn1stfn
Assertion ovolval4lem2 φvol*A=supM*<

Proof

Step Hyp Ref Expression
1 ovolval4lem2.a φA
2 ovolval4lem2.m M=y*|f2Aran.fy=sum^vol.f
3 ovolval4lem2.g G=n1stfnif1stfn2ndfn2ndfn1stfn
4 iftrue 1stfn2ndfnif1stfn2ndfn2ndfn1stfn=2ndfn
5 4 opeq2d 1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn=1stfn2ndfn
6 5 adantl f2n1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn=1stfn2ndfn
7 df-br 1stfn2ndfn1stfn2ndfn
8 7 biimpi 1stfn2ndfn1stfn2ndfn
9 8 adantl f2n1stfn2ndfn1stfn2ndfn
10 6 9 eqeltrd f2n1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn
11 iffalse ¬1stfn2ndfnif1stfn2ndfn2ndfn1stfn=1stfn
12 11 opeq2d ¬1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn=1stfn1stfn
13 12 adantl f2n¬1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn=1stfn1stfn
14 elmapi f2f:2
15 14 ffvelcdmda f2nfn2
16 xp1st fn21stfn
17 15 16 syl f2n1stfn
18 17 leidd f2n1stfn1stfn
19 df-br 1stfn1stfn1stfn1stfn
20 18 19 sylib f2n1stfn1stfn
21 20 adantr f2n¬1stfn2ndfn1stfn1stfn
22 13 21 eqeltrd f2n¬1stfn2ndfn1stfnif1stfn2ndfn2ndfn1stfn
23 10 22 pm2.61dan f2n1stfnif1stfn2ndfn2ndfn1stfn
24 xp2nd fn22ndfn
25 15 24 syl f2n2ndfn
26 25 17 ifcld f2nif1stfn2ndfn2ndfn1stfn
27 opelxpi 1stfnif1stfn2ndfn2ndfn1stfn1stfnif1stfn2ndfn2ndfn1stfn2
28 17 26 27 syl2anc f2n1stfnif1stfn2ndfn2ndfn1stfn2
29 23 28 elind f2n1stfnif1stfn2ndfn2ndfn1stfn2
30 29 3 fmptd f2G:2
31 reex V
32 31 31 xpex 2V
33 32 inex2 2V
34 33 a1i f22V
35 nnex V
36 35 a1i f2V
37 34 36 elmapd f2G2G:2
38 30 37 mpbird f2G2
39 38 adantr f2Aran.fy=sum^vol.fG2
40 simpr f2Aran.fAran.f
41 rexpssxrxp 2*×*
42 41 a1i f22*×*
43 14 42 fssd f2f:*×*
44 2fveq3 k=n1stfk=1stfn
45 2fveq3 k=n2ndfk=2ndfn
46 44 45 breq12d k=n1stfk2ndfk1stfn2ndfn
47 46 cbvrabv k|1stfk2ndfk=n|1stfn2ndfn
48 43 3 47 ovolval4lem1 f2ran.f=ran.Gvol.f=vol.G
49 48 simpld f2ran.f=ran.G
50 49 adantr f2Aran.fran.f=ran.G
51 40 50 sseqtrd f2Aran.fAran.G
52 51 adantrr f2Aran.fy=sum^vol.fAran.G
53 simpr f2y=sum^vol.fy=sum^vol.f
54 48 simprd f2vol.f=vol.G
55 coass vol.f=vol.f
56 55 a1i f2vol.f=vol.f
57 coass vol.G=vol.G
58 57 a1i f2vol.G=vol.G
59 54 56 58 3eqtr4d f2vol.f=vol.G
60 59 fveq2d f2sum^vol.f=sum^vol.G
61 60 adantr f2y=sum^vol.fsum^vol.f=sum^vol.G
62 53 61 eqtrd f2y=sum^vol.fy=sum^vol.G
63 62 adantrl f2Aran.fy=sum^vol.fy=sum^vol.G
64 52 63 jca f2Aran.fy=sum^vol.fAran.Gy=sum^vol.G
65 coeq2 g=G.g=.G
66 65 rneqd g=Gran.g=ran.G
67 66 unieqd g=Gran.g=ran.G
68 67 sseq2d g=GAran.gAran.G
69 coeq2 g=Gvol.g=vol.G
70 69 fveq2d g=Gsum^vol.g=sum^vol.G
71 70 eqeq2d g=Gy=sum^vol.gy=sum^vol.G
72 68 71 anbi12d g=GAran.gy=sum^vol.gAran.Gy=sum^vol.G
73 72 rspcev G2Aran.Gy=sum^vol.Gg2Aran.gy=sum^vol.g
74 39 64 73 syl2anc f2Aran.fy=sum^vol.fg2Aran.gy=sum^vol.g
75 74 rexlimiva f2Aran.fy=sum^vol.fg2Aran.gy=sum^vol.g
76 inss2 22
77 mapss 2V2222
78 32 76 77 mp2an 22
79 78 sseli g2g2
80 79 adantr g2Aran.gy=sum^vol.gg2
81 simpr g2Aran.gy=sum^vol.gAran.gy=sum^vol.g
82 coeq2 f=g.f=.g
83 82 rneqd f=gran.f=ran.g
84 83 unieqd f=gran.f=ran.g
85 84 sseq2d f=gAran.fAran.g
86 coeq2 f=gvol.f=vol.g
87 86 fveq2d f=gsum^vol.f=sum^vol.g
88 87 eqeq2d f=gy=sum^vol.fy=sum^vol.g
89 85 88 anbi12d f=gAran.fy=sum^vol.fAran.gy=sum^vol.g
90 89 rspcev g2Aran.gy=sum^vol.gf2Aran.fy=sum^vol.f
91 80 81 90 syl2anc g2Aran.gy=sum^vol.gf2Aran.fy=sum^vol.f
92 91 rexlimiva g2Aran.gy=sum^vol.gf2Aran.fy=sum^vol.f
93 75 92 impbii f2Aran.fy=sum^vol.fg2Aran.gy=sum^vol.g
94 93 rabbii y*|f2Aran.fy=sum^vol.f=y*|g2Aran.gy=sum^vol.g
95 2 94 eqtri M=y*|g2Aran.gy=sum^vol.g
96 1 95 ovolval3 φvol*A=supM*<