Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval4lem1.f |
|
2 |
|
ovolval4lem1.g |
|
3 |
|
ovolval4lem1.a |
|
4 |
|
ioof |
|
5 |
4
|
a1i |
|
6 |
|
fco |
|
7 |
5 1 6
|
syl2anc |
|
8 |
7
|
ffnd |
|
9 |
|
fniunfv |
|
10 |
8 9
|
syl |
|
11 |
10
|
eqcomd |
|
12 |
|
ssrab2 |
|
13 |
3 12
|
eqsstri |
|
14 |
|
undif |
|
15 |
13 14
|
mpbi |
|
16 |
15
|
eqcomi |
|
17 |
16
|
iuneq1i |
|
18 |
|
iunxun |
|
19 |
17 18
|
eqtri |
|
20 |
19
|
a1i |
|
21 |
1
|
ffvelrnda |
|
22 |
|
xp1st |
|
23 |
21 22
|
syl |
|
24 |
|
xp2nd |
|
25 |
21 24
|
syl |
|
26 |
25 23
|
ifcld |
|
27 |
23 26
|
opelxpd |
|
28 |
27 2
|
fmptd |
|
29 |
|
fco |
|
30 |
5 28 29
|
syl2anc |
|
31 |
30
|
ffnd |
|
32 |
|
fniunfv |
|
33 |
31 32
|
syl |
|
34 |
33
|
eqcomd |
|
35 |
16
|
iuneq1i |
|
36 |
|
iunxun |
|
37 |
35 36
|
eqtri |
|
38 |
37
|
a1i |
|
39 |
28
|
adantr |
|
40 |
13
|
sseli |
|
41 |
40
|
adantl |
|
42 |
|
fvco3 |
|
43 |
39 41 42
|
syl2anc |
|
44 |
1
|
adantr |
|
45 |
|
fvco3 |
|
46 |
44 41 45
|
syl2anc |
|
47 |
|
simpl |
|
48 |
|
1st2nd2 |
|
49 |
21 48
|
syl |
|
50 |
47 41 49
|
syl2anc |
|
51 |
2
|
a1i |
|
52 |
27
|
elexd |
|
53 |
51 52
|
fvmpt2d |
|
54 |
47 41 53
|
syl2anc |
|
55 |
3
|
eleq2i |
|
56 |
55
|
biimpi |
|
57 |
|
rabid |
|
58 |
56 57
|
sylib |
|
59 |
58
|
simprd |
|
60 |
59
|
adantl |
|
61 |
60
|
iftrued |
|
62 |
61
|
opeq2d |
|
63 |
|
eqidd |
|
64 |
54 62 63
|
3eqtrd |
|
65 |
50 64
|
eqtr4d |
|
66 |
65
|
fveq2d |
|
67 |
46 66
|
eqtrd |
|
68 |
43 67
|
eqtr4d |
|
69 |
68
|
iuneq2dv |
|
70 |
28
|
adantr |
|
71 |
|
eldifi |
|
72 |
71
|
adantl |
|
73 |
70 72 42
|
syl2anc |
|
74 |
|
simpl |
|
75 |
74 72 53
|
syl2anc |
|
76 |
71
|
anim1i |
|
77 |
76 57
|
sylibr |
|
78 |
77 55
|
sylibr |
|
79 |
78
|
adantll |
|
80 |
|
eldifn |
|
81 |
80
|
ad2antlr |
|
82 |
79 81
|
pm2.65da |
|
83 |
82
|
iffalsed |
|
84 |
83
|
opeq2d |
|
85 |
75 84
|
eqtrd |
|
86 |
85
|
fveq2d |
|
87 |
|
iooid |
|
88 |
87
|
eqcomi |
|
89 |
|
df-ov |
|
90 |
88 89
|
eqtr2i |
|
91 |
90
|
a1i |
|
92 |
73 86 91
|
3eqtrd |
|
93 |
92
|
iuneq2dv |
|
94 |
|
iun0 |
|
95 |
94
|
a1i |
|
96 |
93 95
|
eqtrd |
|
97 |
74 1
|
syl |
|
98 |
97 72 45
|
syl2anc |
|
99 |
74 72 49
|
syl2anc |
|
100 |
99
|
fveq2d |
|
101 |
|
df-ov |
|
102 |
101
|
a1i |
|
103 |
|
simplr |
|
104 |
72 23
|
syldan |
|
105 |
104
|
adantr |
|
106 |
72 25
|
syldan |
|
107 |
106
|
adantr |
|
108 |
|
simpr |
|
109 |
105 107
|
xrltnled |
|
110 |
108 109
|
mpbird |
|
111 |
105 107 110
|
xrltled |
|
112 |
103 111 78
|
syl2anc |
|
113 |
80
|
ad2antlr |
|
114 |
112 113
|
condan |
|
115 |
|
ioo0 |
|
116 |
104 106 115
|
syl2anc |
|
117 |
114 116
|
mpbird |
|
118 |
102 117
|
eqtr3d |
|
119 |
98 100 118
|
3eqtrd |
|
120 |
119
|
iuneq2dv |
|
121 |
120 95
|
eqtrd |
|
122 |
96 121
|
eqtr4d |
|
123 |
69 122
|
uneq12d |
|
124 |
34 38 123
|
3eqtrrd |
|
125 |
11 20 124
|
3eqtrd |
|
126 |
|
volf |
|
127 |
126
|
a1i |
|
128 |
1
|
adantr |
|
129 |
|
simpr |
|
130 |
128 129 45
|
syl2anc |
|
131 |
49
|
fveq2d |
|
132 |
101
|
eqcomi |
|
133 |
132
|
a1i |
|
134 |
130 131 133
|
3eqtrd |
|
135 |
|
ioombl |
|
136 |
135
|
a1i |
|
137 |
134 136
|
eqeltrd |
|
138 |
137
|
ralrimiva |
|
139 |
8 138
|
jca |
|
140 |
|
ffnfv |
|
141 |
139 140
|
sylibr |
|
142 |
|
fco |
|
143 |
127 141 142
|
syl2anc |
|
144 |
143
|
ffnd |
|
145 |
68
|
adantlr |
|
146 |
137
|
adantr |
|
147 |
145 146
|
eqeltrd |
|
148 |
|
simpll |
|
149 |
|
eldif |
|
150 |
149
|
bicomi |
|
151 |
150
|
biimpi |
|
152 |
151
|
adantll |
|
153 |
117 135
|
eqeltrrdi |
|
154 |
92 153
|
eqeltrd |
|
155 |
148 152 154
|
syl2anc |
|
156 |
147 155
|
pm2.61dan |
|
157 |
156
|
ralrimiva |
|
158 |
31 157
|
jca |
|
159 |
|
ffnfv |
|
160 |
158 159
|
sylibr |
|
161 |
|
fco |
|
162 |
127 160 161
|
syl2anc |
|
163 |
162
|
ffnd |
|
164 |
145
|
eqcomd |
|
165 |
119 92
|
eqtr4d |
|
166 |
148 152 165
|
syl2anc |
|
167 |
164 166
|
pm2.61dan |
|
168 |
167
|
fveq2d |
|
169 |
|
fnfun |
|
170 |
8 169
|
syl |
|
171 |
170
|
adantr |
|
172 |
7
|
fdmd |
|
173 |
172
|
eqcomd |
|
174 |
173
|
adantr |
|
175 |
129 174
|
eleqtrd |
|
176 |
|
fvco |
|
177 |
171 175 176
|
syl2anc |
|
178 |
|
fnfun |
|
179 |
31 178
|
syl |
|
180 |
179
|
adantr |
|
181 |
30
|
fdmd |
|
182 |
181
|
eqcomd |
|
183 |
182
|
adantr |
|
184 |
129 183
|
eleqtrd |
|
185 |
|
fvco |
|
186 |
180 184 185
|
syl2anc |
|
187 |
168 177 186
|
3eqtr4d |
|
188 |
144 163 187
|
eqfnfvd |
|
189 |
125 188
|
jca |
|