Metamath Proof Explorer


Theorem ovolval4lem1

Description: |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) n ) = ( ( (,) o. F ) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4lem1.f φ F : * × *
ovolval4lem1.g G = n 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
ovolval4lem1.a A = n | 1 st F n 2 nd F n
Assertion ovolval4lem1 φ ran . F = ran . G vol . F = vol . G

Proof

Step Hyp Ref Expression
1 ovolval4lem1.f φ F : * × *
2 ovolval4lem1.g G = n 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
3 ovolval4lem1.a A = n | 1 st F n 2 nd F n
4 ioof . : * × * 𝒫
5 4 a1i φ . : * × * 𝒫
6 fco . : * × * 𝒫 F : * × * . F : 𝒫
7 5 1 6 syl2anc φ . F : 𝒫
8 7 ffnd φ . F Fn
9 fniunfv . F Fn n . F n = ran . F
10 8 9 syl φ n . F n = ran . F
11 10 eqcomd φ ran . F = n . F n
12 ssrab2 n | 1 st F n 2 nd F n
13 3 12 eqsstri A
14 undif A A A =
15 13 14 mpbi A A =
16 15 eqcomi = A A
17 16 iuneq1i n . F n = n A A . F n
18 iunxun n A A . F n = n A . F n n A . F n
19 17 18 eqtri n . F n = n A . F n n A . F n
20 19 a1i φ n . F n = n A . F n n A . F n
21 1 ffvelrnda φ n F n * × *
22 xp1st F n * × * 1 st F n *
23 21 22 syl φ n 1 st F n *
24 xp2nd F n * × * 2 nd F n *
25 21 24 syl φ n 2 nd F n *
26 25 23 ifcld φ n if 1 st F n 2 nd F n 2 nd F n 1 st F n *
27 23 26 opelxpd φ n 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n * × *
28 27 2 fmptd φ G : * × *
29 fco . : * × * 𝒫 G : * × * . G : 𝒫
30 5 28 29 syl2anc φ . G : 𝒫
31 30 ffnd φ . G Fn
32 fniunfv . G Fn n . G n = ran . G
33 31 32 syl φ n . G n = ran . G
34 33 eqcomd φ ran . G = n . G n
35 16 iuneq1i n . G n = n A A . G n
36 iunxun n A A . G n = n A . G n n A . G n
37 35 36 eqtri n . G n = n A . G n n A . G n
38 37 a1i φ n . G n = n A . G n n A . G n
39 28 adantr φ n A G : * × *
40 13 sseli n A n
41 40 adantl φ n A n
42 fvco3 G : * × * n . G n = . G n
43 39 41 42 syl2anc φ n A . G n = . G n
44 1 adantr φ n A F : * × *
45 fvco3 F : * × * n . F n = . F n
46 44 41 45 syl2anc φ n A . F n = . F n
47 simpl φ n A φ
48 1st2nd2 F n * × * F n = 1 st F n 2 nd F n
49 21 48 syl φ n F n = 1 st F n 2 nd F n
50 47 41 49 syl2anc φ n A F n = 1 st F n 2 nd F n
51 2 a1i φ G = n 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
52 27 elexd φ n 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n V
53 51 52 fvmpt2d φ n G n = 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
54 47 41 53 syl2anc φ n A G n = 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
55 3 eleq2i n A n n | 1 st F n 2 nd F n
56 55 biimpi n A n n | 1 st F n 2 nd F n
57 rabid n n | 1 st F n 2 nd F n n 1 st F n 2 nd F n
58 56 57 sylib n A n 1 st F n 2 nd F n
59 58 simprd n A 1 st F n 2 nd F n
60 59 adantl φ n A 1 st F n 2 nd F n
61 60 iftrued φ n A if 1 st F n 2 nd F n 2 nd F n 1 st F n = 2 nd F n
62 61 opeq2d φ n A 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n = 1 st F n 2 nd F n
63 eqidd φ n A 1 st F n 2 nd F n = 1 st F n 2 nd F n
64 54 62 63 3eqtrd φ n A G n = 1 st F n 2 nd F n
65 50 64 eqtr4d φ n A F n = G n
66 65 fveq2d φ n A . F n = . G n
67 46 66 eqtrd φ n A . F n = . G n
68 43 67 eqtr4d φ n A . G n = . F n
69 68 iuneq2dv φ n A . G n = n A . F n
70 28 adantr φ n A G : * × *
71 eldifi n A n
72 71 adantl φ n A n
73 70 72 42 syl2anc φ n A . G n = . G n
74 simpl φ n A φ
75 74 72 53 syl2anc φ n A G n = 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n
76 71 anim1i n A 1 st F n 2 nd F n n 1 st F n 2 nd F n
77 76 57 sylibr n A 1 st F n 2 nd F n n n | 1 st F n 2 nd F n
78 77 55 sylibr n A 1 st F n 2 nd F n n A
79 78 adantll φ n A 1 st F n 2 nd F n n A
80 eldifn n A ¬ n A
81 80 ad2antlr φ n A 1 st F n 2 nd F n ¬ n A
82 79 81 pm2.65da φ n A ¬ 1 st F n 2 nd F n
83 82 iffalsed φ n A if 1 st F n 2 nd F n 2 nd F n 1 st F n = 1 st F n
84 83 opeq2d φ n A 1 st F n if 1 st F n 2 nd F n 2 nd F n 1 st F n = 1 st F n 1 st F n
85 75 84 eqtrd φ n A G n = 1 st F n 1 st F n
86 85 fveq2d φ n A . G n = . 1 st F n 1 st F n
87 iooid 1 st F n 1 st F n =
88 87 eqcomi = 1 st F n 1 st F n
89 df-ov 1 st F n 1 st F n = . 1 st F n 1 st F n
90 88 89 eqtr2i . 1 st F n 1 st F n =
91 90 a1i φ n A . 1 st F n 1 st F n =
92 73 86 91 3eqtrd φ n A . G n =
93 92 iuneq2dv φ n A . G n = n A
94 iun0 n A =
95 94 a1i φ n A =
96 93 95 eqtrd φ n A . G n =
97 74 1 syl φ n A F : * × *
98 97 72 45 syl2anc φ n A . F n = . F n
99 74 72 49 syl2anc φ n A F n = 1 st F n 2 nd F n
100 99 fveq2d φ n A . F n = . 1 st F n 2 nd F n
101 df-ov 1 st F n 2 nd F n = . 1 st F n 2 nd F n
102 101 a1i φ n A 1 st F n 2 nd F n = . 1 st F n 2 nd F n
103 simplr φ n A ¬ 2 nd F n 1 st F n n A
104 72 23 syldan φ n A 1 st F n *
105 104 adantr φ n A ¬ 2 nd F n 1 st F n 1 st F n *
106 72 25 syldan φ n A 2 nd F n *
107 106 adantr φ n A ¬ 2 nd F n 1 st F n 2 nd F n *
108 simpr φ n A ¬ 2 nd F n 1 st F n ¬ 2 nd F n 1 st F n
109 105 107 xrltnled φ n A ¬ 2 nd F n 1 st F n 1 st F n < 2 nd F n ¬ 2 nd F n 1 st F n
110 108 109 mpbird φ n A ¬ 2 nd F n 1 st F n 1 st F n < 2 nd F n
111 105 107 110 xrltled φ n A ¬ 2 nd F n 1 st F n 1 st F n 2 nd F n
112 103 111 78 syl2anc φ n A ¬ 2 nd F n 1 st F n n A
113 80 ad2antlr φ n A ¬ 2 nd F n 1 st F n ¬ n A
114 112 113 condan φ n A 2 nd F n 1 st F n
115 ioo0 1 st F n * 2 nd F n * 1 st F n 2 nd F n = 2 nd F n 1 st F n
116 104 106 115 syl2anc φ n A 1 st F n 2 nd F n = 2 nd F n 1 st F n
117 114 116 mpbird φ n A 1 st F n 2 nd F n =
118 102 117 eqtr3d φ n A . 1 st F n 2 nd F n =
119 98 100 118 3eqtrd φ n A . F n =
120 119 iuneq2dv φ n A . F n = n A
121 120 95 eqtrd φ n A . F n =
122 96 121 eqtr4d φ n A . G n = n A . F n
123 69 122 uneq12d φ n A . G n n A . G n = n A . F n n A . F n
124 34 38 123 3eqtrrd φ n A . F n n A . F n = ran . G
125 11 20 124 3eqtrd φ ran . F = ran . G
126 volf vol : dom vol 0 +∞
127 126 a1i φ vol : dom vol 0 +∞
128 1 adantr φ n F : * × *
129 simpr φ n n
130 128 129 45 syl2anc φ n . F n = . F n
131 49 fveq2d φ n . F n = . 1 st F n 2 nd F n
132 101 eqcomi . 1 st F n 2 nd F n = 1 st F n 2 nd F n
133 132 a1i φ n . 1 st F n 2 nd F n = 1 st F n 2 nd F n
134 130 131 133 3eqtrd φ n . F n = 1 st F n 2 nd F n
135 ioombl 1 st F n 2 nd F n dom vol
136 135 a1i φ n 1 st F n 2 nd F n dom vol
137 134 136 eqeltrd φ n . F n dom vol
138 137 ralrimiva φ n . F n dom vol
139 8 138 jca φ . F Fn n . F n dom vol
140 ffnfv . F : dom vol . F Fn n . F n dom vol
141 139 140 sylibr φ . F : dom vol
142 fco vol : dom vol 0 +∞ . F : dom vol vol . F : 0 +∞
143 127 141 142 syl2anc φ vol . F : 0 +∞
144 143 ffnd φ vol . F Fn
145 68 adantlr φ n n A . G n = . F n
146 137 adantr φ n n A . F n dom vol
147 145 146 eqeltrd φ n n A . G n dom vol
148 simpll φ n ¬ n A φ
149 eldif n A n ¬ n A
150 149 bicomi n ¬ n A n A
151 150 biimpi n ¬ n A n A
152 151 adantll φ n ¬ n A n A
153 117 135 eqeltrrdi φ n A dom vol
154 92 153 eqeltrd φ n A . G n dom vol
155 148 152 154 syl2anc φ n ¬ n A . G n dom vol
156 147 155 pm2.61dan φ n . G n dom vol
157 156 ralrimiva φ n . G n dom vol
158 31 157 jca φ . G Fn n . G n dom vol
159 ffnfv . G : dom vol . G Fn n . G n dom vol
160 158 159 sylibr φ . G : dom vol
161 fco vol : dom vol 0 +∞ . G : dom vol vol . G : 0 +∞
162 127 160 161 syl2anc φ vol . G : 0 +∞
163 162 ffnd φ vol . G Fn
164 145 eqcomd φ n n A . F n = . G n
165 119 92 eqtr4d φ n A . F n = . G n
166 148 152 165 syl2anc φ n ¬ n A . F n = . G n
167 164 166 pm2.61dan φ n . F n = . G n
168 167 fveq2d φ n vol . F n = vol . G n
169 fnfun . F Fn Fun . F
170 8 169 syl φ Fun . F
171 170 adantr φ n Fun . F
172 7 fdmd φ dom . F =
173 172 eqcomd φ = dom . F
174 173 adantr φ n = dom . F
175 129 174 eleqtrd φ n n dom . F
176 fvco Fun . F n dom . F vol . F n = vol . F n
177 171 175 176 syl2anc φ n vol . F n = vol . F n
178 fnfun . G Fn Fun . G
179 31 178 syl φ Fun . G
180 179 adantr φ n Fun . G
181 30 fdmd φ dom . G =
182 181 eqcomd φ = dom . G
183 182 adantr φ n = dom . G
184 129 183 eleqtrd φ n n dom . G
185 fvco Fun . G n dom . G vol . G n = vol . G n
186 180 184 185 syl2anc φ n vol . G n = vol . G n
187 168 177 186 3eqtr4d φ n vol . F n = vol . G n
188 144 163 187 eqfnfvd φ vol . F = vol . G
189 125 188 jca φ ran . F = ran . G vol . F = vol . G