| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolval4lem1.f |
|- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 2 |
|
ovolval4lem1.g |
|- G = ( n e. NN |-> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. ) |
| 3 |
|
ovolval4lem1.a |
|- A = { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } |
| 4 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 5 |
4
|
a1i |
|- ( ph -> (,) : ( RR* X. RR* ) --> ~P RR ) |
| 6 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 7 |
5 1 6
|
syl2anc |
|- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 8 |
7
|
ffnd |
|- ( ph -> ( (,) o. F ) Fn NN ) |
| 9 |
|
fniunfv |
|- ( ( (,) o. F ) Fn NN -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> U_ n e. NN ( ( (,) o. F ) ` n ) = U. ran ( (,) o. F ) ) |
| 11 |
10
|
eqcomd |
|- ( ph -> U. ran ( (,) o. F ) = U_ n e. NN ( ( (,) o. F ) ` n ) ) |
| 12 |
|
ssrab2 |
|- { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } C_ NN |
| 13 |
3 12
|
eqsstri |
|- A C_ NN |
| 14 |
|
undif |
|- ( A C_ NN <-> ( A u. ( NN \ A ) ) = NN ) |
| 15 |
13 14
|
mpbi |
|- ( A u. ( NN \ A ) ) = NN |
| 16 |
15
|
eqcomi |
|- NN = ( A u. ( NN \ A ) ) |
| 17 |
16
|
iuneq1i |
|- U_ n e. NN ( ( (,) o. F ) ` n ) = U_ n e. ( A u. ( NN \ A ) ) ( ( (,) o. F ) ` n ) |
| 18 |
|
iunxun |
|- U_ n e. ( A u. ( NN \ A ) ) ( ( (,) o. F ) ` n ) = ( U_ n e. A ( ( (,) o. F ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) |
| 19 |
17 18
|
eqtri |
|- U_ n e. NN ( ( (,) o. F ) ` n ) = ( U_ n e. A ( ( (,) o. F ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) |
| 20 |
19
|
a1i |
|- ( ph -> U_ n e. NN ( ( (,) o. F ) ` n ) = ( U_ n e. A ( ( (,) o. F ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) ) |
| 21 |
1
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( RR* X. RR* ) ) |
| 22 |
|
xp1st |
|- ( ( F ` n ) e. ( RR* X. RR* ) -> ( 1st ` ( F ` n ) ) e. RR* ) |
| 23 |
21 22
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( F ` n ) ) e. RR* ) |
| 24 |
|
xp2nd |
|- ( ( F ` n ) e. ( RR* X. RR* ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 25 |
21 24
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 26 |
25 23
|
ifcld |
|- ( ( ph /\ n e. NN ) -> if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) e. RR* ) |
| 27 |
23 26
|
opelxpd |
|- ( ( ph /\ n e. NN ) -> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. e. ( RR* X. RR* ) ) |
| 28 |
27 2
|
fmptd |
|- ( ph -> G : NN --> ( RR* X. RR* ) ) |
| 29 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ G : NN --> ( RR* X. RR* ) ) -> ( (,) o. G ) : NN --> ~P RR ) |
| 30 |
5 28 29
|
syl2anc |
|- ( ph -> ( (,) o. G ) : NN --> ~P RR ) |
| 31 |
30
|
ffnd |
|- ( ph -> ( (,) o. G ) Fn NN ) |
| 32 |
|
fniunfv |
|- ( ( (,) o. G ) Fn NN -> U_ n e. NN ( ( (,) o. G ) ` n ) = U. ran ( (,) o. G ) ) |
| 33 |
31 32
|
syl |
|- ( ph -> U_ n e. NN ( ( (,) o. G ) ` n ) = U. ran ( (,) o. G ) ) |
| 34 |
33
|
eqcomd |
|- ( ph -> U. ran ( (,) o. G ) = U_ n e. NN ( ( (,) o. G ) ` n ) ) |
| 35 |
16
|
iuneq1i |
|- U_ n e. NN ( ( (,) o. G ) ` n ) = U_ n e. ( A u. ( NN \ A ) ) ( ( (,) o. G ) ` n ) |
| 36 |
|
iunxun |
|- U_ n e. ( A u. ( NN \ A ) ) ( ( (,) o. G ) ` n ) = ( U_ n e. A ( ( (,) o. G ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) ) |
| 37 |
35 36
|
eqtri |
|- U_ n e. NN ( ( (,) o. G ) ` n ) = ( U_ n e. A ( ( (,) o. G ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) ) |
| 38 |
37
|
a1i |
|- ( ph -> U_ n e. NN ( ( (,) o. G ) ` n ) = ( U_ n e. A ( ( (,) o. G ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) ) ) |
| 39 |
28
|
adantr |
|- ( ( ph /\ n e. A ) -> G : NN --> ( RR* X. RR* ) ) |
| 40 |
13
|
sseli |
|- ( n e. A -> n e. NN ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ n e. A ) -> n e. NN ) |
| 42 |
|
fvco3 |
|- ( ( G : NN --> ( RR* X. RR* ) /\ n e. NN ) -> ( ( (,) o. G ) ` n ) = ( (,) ` ( G ` n ) ) ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) ` n ) = ( (,) ` ( G ` n ) ) ) |
| 44 |
1
|
adantr |
|- ( ( ph /\ n e. A ) -> F : NN --> ( RR* X. RR* ) ) |
| 45 |
|
fvco3 |
|- ( ( F : NN --> ( RR* X. RR* ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 46 |
44 41 45
|
syl2anc |
|- ( ( ph /\ n e. A ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 47 |
|
simpl |
|- ( ( ph /\ n e. A ) -> ph ) |
| 48 |
|
1st2nd2 |
|- ( ( F ` n ) e. ( RR* X. RR* ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 49 |
21 48
|
syl |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 50 |
47 41 49
|
syl2anc |
|- ( ( ph /\ n e. A ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 51 |
2
|
a1i |
|- ( ph -> G = ( n e. NN |-> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. ) ) |
| 52 |
27
|
elexd |
|- ( ( ph /\ n e. NN ) -> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. e. _V ) |
| 53 |
51 52
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. ) |
| 54 |
47 41 53
|
syl2anc |
|- ( ( ph /\ n e. A ) -> ( G ` n ) = <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. ) |
| 55 |
3
|
eleq2i |
|- ( n e. A <-> n e. { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } ) |
| 56 |
55
|
biimpi |
|- ( n e. A -> n e. { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } ) |
| 57 |
|
rabid |
|- ( n e. { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } <-> ( n e. NN /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 58 |
56 57
|
sylib |
|- ( n e. A -> ( n e. NN /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 59 |
58
|
simprd |
|- ( n e. A -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ n e. A ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 61 |
60
|
iftrued |
|- ( ( ph /\ n e. A ) -> if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) = ( 2nd ` ( F ` n ) ) ) |
| 62 |
61
|
opeq2d |
|- ( ( ph /\ n e. A ) -> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 63 |
|
eqidd |
|- ( ( ph /\ n e. A ) -> <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 64 |
54 62 63
|
3eqtrd |
|- ( ( ph /\ n e. A ) -> ( G ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 65 |
50 64
|
eqtr4d |
|- ( ( ph /\ n e. A ) -> ( F ` n ) = ( G ` n ) ) |
| 66 |
65
|
fveq2d |
|- ( ( ph /\ n e. A ) -> ( (,) ` ( F ` n ) ) = ( (,) ` ( G ` n ) ) ) |
| 67 |
46 66
|
eqtrd |
|- ( ( ph /\ n e. A ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( G ` n ) ) ) |
| 68 |
43 67
|
eqtr4d |
|- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) ` n ) = ( ( (,) o. F ) ` n ) ) |
| 69 |
68
|
iuneq2dv |
|- ( ph -> U_ n e. A ( ( (,) o. G ) ` n ) = U_ n e. A ( ( (,) o. F ) ` n ) ) |
| 70 |
28
|
adantr |
|- ( ( ph /\ n e. ( NN \ A ) ) -> G : NN --> ( RR* X. RR* ) ) |
| 71 |
|
eldifi |
|- ( n e. ( NN \ A ) -> n e. NN ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ n e. ( NN \ A ) ) -> n e. NN ) |
| 73 |
70 72 42
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. G ) ` n ) = ( (,) ` ( G ` n ) ) ) |
| 74 |
|
simpl |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ph ) |
| 75 |
74 72 53
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( G ` n ) = <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. ) |
| 76 |
71
|
anim1i |
|- ( ( n e. ( NN \ A ) /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> ( n e. NN /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) ) |
| 77 |
76 57
|
sylibr |
|- ( ( n e. ( NN \ A ) /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> n e. { n e. NN | ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) } ) |
| 78 |
77 55
|
sylibr |
|- ( ( n e. ( NN \ A ) /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> n e. A ) |
| 79 |
78
|
adantll |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> n e. A ) |
| 80 |
|
eldifn |
|- ( n e. ( NN \ A ) -> -. n e. A ) |
| 81 |
80
|
ad2antlr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) -> -. n e. A ) |
| 82 |
79 81
|
pm2.65da |
|- ( ( ph /\ n e. ( NN \ A ) ) -> -. ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 83 |
82
|
iffalsed |
|- ( ( ph /\ n e. ( NN \ A ) ) -> if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) = ( 1st ` ( F ` n ) ) ) |
| 84 |
83
|
opeq2d |
|- ( ( ph /\ n e. ( NN \ A ) ) -> <. ( 1st ` ( F ` n ) ) , if ( ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) ) >. = <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) |
| 85 |
75 84
|
eqtrd |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( G ` n ) = <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) |
| 86 |
85
|
fveq2d |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( (,) ` ( G ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) ) |
| 87 |
|
iooid |
|- ( ( 1st ` ( F ` n ) ) (,) ( 1st ` ( F ` n ) ) ) = (/) |
| 88 |
87
|
eqcomi |
|- (/) = ( ( 1st ` ( F ` n ) ) (,) ( 1st ` ( F ` n ) ) ) |
| 89 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) (,) ( 1st ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) |
| 90 |
88 89
|
eqtr2i |
|- ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) = (/) |
| 91 |
90
|
a1i |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 1st ` ( F ` n ) ) >. ) = (/) ) |
| 92 |
73 86 91
|
3eqtrd |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. G ) ` n ) = (/) ) |
| 93 |
92
|
iuneq2dv |
|- ( ph -> U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) = U_ n e. ( NN \ A ) (/) ) |
| 94 |
|
iun0 |
|- U_ n e. ( NN \ A ) (/) = (/) |
| 95 |
94
|
a1i |
|- ( ph -> U_ n e. ( NN \ A ) (/) = (/) ) |
| 96 |
93 95
|
eqtrd |
|- ( ph -> U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) = (/) ) |
| 97 |
74 1
|
syl |
|- ( ( ph /\ n e. ( NN \ A ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 98 |
97 72 45
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 99 |
74 72 49
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 100 |
99
|
fveq2d |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 101 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
| 102 |
101
|
a1i |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 103 |
|
simplr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> n e. ( NN \ A ) ) |
| 104 |
72 23
|
syldan |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( 1st ` ( F ` n ) ) e. RR* ) |
| 105 |
104
|
adantr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> ( 1st ` ( F ` n ) ) e. RR* ) |
| 106 |
72 25
|
syldan |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 107 |
106
|
adantr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
| 108 |
|
simpr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) |
| 109 |
105 107
|
xrltnled |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> ( ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) <-> -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) ) |
| 110 |
108 109
|
mpbird |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> ( 1st ` ( F ` n ) ) < ( 2nd ` ( F ` n ) ) ) |
| 111 |
105 107 110
|
xrltled |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> ( 1st ` ( F ` n ) ) <_ ( 2nd ` ( F ` n ) ) ) |
| 112 |
103 111 78
|
syl2anc |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> n e. A ) |
| 113 |
80
|
ad2antlr |
|- ( ( ( ph /\ n e. ( NN \ A ) ) /\ -. ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) -> -. n e. A ) |
| 114 |
112 113
|
condan |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) |
| 115 |
|
ioo0 |
|- ( ( ( 1st ` ( F ` n ) ) e. RR* /\ ( 2nd ` ( F ` n ) ) e. RR* ) -> ( ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = (/) <-> ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) ) |
| 116 |
104 106 115
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = (/) <-> ( 2nd ` ( F ` n ) ) <_ ( 1st ` ( F ` n ) ) ) ) |
| 117 |
114 116
|
mpbird |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = (/) ) |
| 118 |
102 117
|
eqtr3d |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) = (/) ) |
| 119 |
98 100 118
|
3eqtrd |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. F ) ` n ) = (/) ) |
| 120 |
119
|
iuneq2dv |
|- ( ph -> U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) = U_ n e. ( NN \ A ) (/) ) |
| 121 |
120 95
|
eqtrd |
|- ( ph -> U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) = (/) ) |
| 122 |
96 121
|
eqtr4d |
|- ( ph -> U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) = U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) |
| 123 |
69 122
|
uneq12d |
|- ( ph -> ( U_ n e. A ( ( (,) o. G ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. G ) ` n ) ) = ( U_ n e. A ( ( (,) o. F ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) ) |
| 124 |
34 38 123
|
3eqtrrd |
|- ( ph -> ( U_ n e. A ( ( (,) o. F ) ` n ) u. U_ n e. ( NN \ A ) ( ( (,) o. F ) ` n ) ) = U. ran ( (,) o. G ) ) |
| 125 |
11 20 124
|
3eqtrd |
|- ( ph -> U. ran ( (,) o. F ) = U. ran ( (,) o. G ) ) |
| 126 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
| 127 |
126
|
a1i |
|- ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 128 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : NN --> ( RR* X. RR* ) ) |
| 129 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 130 |
128 129 45
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) ) |
| 131 |
49
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
| 132 |
101
|
eqcomi |
|- ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) |
| 133 |
132
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 134 |
130 131 133
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) ) |
| 135 |
|
ioombl |
|- ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) e. dom vol |
| 136 |
135
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) e. dom vol ) |
| 137 |
134 136
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( (,) o. F ) ` n ) e. dom vol ) |
| 138 |
137
|
ralrimiva |
|- ( ph -> A. n e. NN ( ( (,) o. F ) ` n ) e. dom vol ) |
| 139 |
8 138
|
jca |
|- ( ph -> ( ( (,) o. F ) Fn NN /\ A. n e. NN ( ( (,) o. F ) ` n ) e. dom vol ) ) |
| 140 |
|
ffnfv |
|- ( ( (,) o. F ) : NN --> dom vol <-> ( ( (,) o. F ) Fn NN /\ A. n e. NN ( ( (,) o. F ) ` n ) e. dom vol ) ) |
| 141 |
139 140
|
sylibr |
|- ( ph -> ( (,) o. F ) : NN --> dom vol ) |
| 142 |
|
fco |
|- ( ( vol : dom vol --> ( 0 [,] +oo ) /\ ( (,) o. F ) : NN --> dom vol ) -> ( vol o. ( (,) o. F ) ) : NN --> ( 0 [,] +oo ) ) |
| 143 |
127 141 142
|
syl2anc |
|- ( ph -> ( vol o. ( (,) o. F ) ) : NN --> ( 0 [,] +oo ) ) |
| 144 |
143
|
ffnd |
|- ( ph -> ( vol o. ( (,) o. F ) ) Fn NN ) |
| 145 |
68
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ n e. A ) -> ( ( (,) o. G ) ` n ) = ( ( (,) o. F ) ` n ) ) |
| 146 |
137
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ n e. A ) -> ( ( (,) o. F ) ` n ) e. dom vol ) |
| 147 |
145 146
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ n e. A ) -> ( ( (,) o. G ) ` n ) e. dom vol ) |
| 148 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ -. n e. A ) -> ph ) |
| 149 |
|
eldif |
|- ( n e. ( NN \ A ) <-> ( n e. NN /\ -. n e. A ) ) |
| 150 |
149
|
bicomi |
|- ( ( n e. NN /\ -. n e. A ) <-> n e. ( NN \ A ) ) |
| 151 |
150
|
biimpi |
|- ( ( n e. NN /\ -. n e. A ) -> n e. ( NN \ A ) ) |
| 152 |
151
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ -. n e. A ) -> n e. ( NN \ A ) ) |
| 153 |
117 135
|
eqeltrrdi |
|- ( ( ph /\ n e. ( NN \ A ) ) -> (/) e. dom vol ) |
| 154 |
92 153
|
eqeltrd |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. G ) ` n ) e. dom vol ) |
| 155 |
148 152 154
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ -. n e. A ) -> ( ( (,) o. G ) ` n ) e. dom vol ) |
| 156 |
147 155
|
pm2.61dan |
|- ( ( ph /\ n e. NN ) -> ( ( (,) o. G ) ` n ) e. dom vol ) |
| 157 |
156
|
ralrimiva |
|- ( ph -> A. n e. NN ( ( (,) o. G ) ` n ) e. dom vol ) |
| 158 |
31 157
|
jca |
|- ( ph -> ( ( (,) o. G ) Fn NN /\ A. n e. NN ( ( (,) o. G ) ` n ) e. dom vol ) ) |
| 159 |
|
ffnfv |
|- ( ( (,) o. G ) : NN --> dom vol <-> ( ( (,) o. G ) Fn NN /\ A. n e. NN ( ( (,) o. G ) ` n ) e. dom vol ) ) |
| 160 |
158 159
|
sylibr |
|- ( ph -> ( (,) o. G ) : NN --> dom vol ) |
| 161 |
|
fco |
|- ( ( vol : dom vol --> ( 0 [,] +oo ) /\ ( (,) o. G ) : NN --> dom vol ) -> ( vol o. ( (,) o. G ) ) : NN --> ( 0 [,] +oo ) ) |
| 162 |
127 160 161
|
syl2anc |
|- ( ph -> ( vol o. ( (,) o. G ) ) : NN --> ( 0 [,] +oo ) ) |
| 163 |
162
|
ffnd |
|- ( ph -> ( vol o. ( (,) o. G ) ) Fn NN ) |
| 164 |
145
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ n e. A ) -> ( ( (,) o. F ) ` n ) = ( ( (,) o. G ) ` n ) ) |
| 165 |
119 92
|
eqtr4d |
|- ( ( ph /\ n e. ( NN \ A ) ) -> ( ( (,) o. F ) ` n ) = ( ( (,) o. G ) ` n ) ) |
| 166 |
148 152 165
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ -. n e. A ) -> ( ( (,) o. F ) ` n ) = ( ( (,) o. G ) ` n ) ) |
| 167 |
164 166
|
pm2.61dan |
|- ( ( ph /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( ( (,) o. G ) ` n ) ) |
| 168 |
167
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( vol ` ( ( (,) o. F ) ` n ) ) = ( vol ` ( ( (,) o. G ) ` n ) ) ) |
| 169 |
|
fnfun |
|- ( ( (,) o. F ) Fn NN -> Fun ( (,) o. F ) ) |
| 170 |
8 169
|
syl |
|- ( ph -> Fun ( (,) o. F ) ) |
| 171 |
170
|
adantr |
|- ( ( ph /\ n e. NN ) -> Fun ( (,) o. F ) ) |
| 172 |
7
|
fdmd |
|- ( ph -> dom ( (,) o. F ) = NN ) |
| 173 |
172
|
eqcomd |
|- ( ph -> NN = dom ( (,) o. F ) ) |
| 174 |
173
|
adantr |
|- ( ( ph /\ n e. NN ) -> NN = dom ( (,) o. F ) ) |
| 175 |
129 174
|
eleqtrd |
|- ( ( ph /\ n e. NN ) -> n e. dom ( (,) o. F ) ) |
| 176 |
|
fvco |
|- ( ( Fun ( (,) o. F ) /\ n e. dom ( (,) o. F ) ) -> ( ( vol o. ( (,) o. F ) ) ` n ) = ( vol ` ( ( (,) o. F ) ` n ) ) ) |
| 177 |
171 175 176
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( vol o. ( (,) o. F ) ) ` n ) = ( vol ` ( ( (,) o. F ) ` n ) ) ) |
| 178 |
|
fnfun |
|- ( ( (,) o. G ) Fn NN -> Fun ( (,) o. G ) ) |
| 179 |
31 178
|
syl |
|- ( ph -> Fun ( (,) o. G ) ) |
| 180 |
179
|
adantr |
|- ( ( ph /\ n e. NN ) -> Fun ( (,) o. G ) ) |
| 181 |
30
|
fdmd |
|- ( ph -> dom ( (,) o. G ) = NN ) |
| 182 |
181
|
eqcomd |
|- ( ph -> NN = dom ( (,) o. G ) ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ n e. NN ) -> NN = dom ( (,) o. G ) ) |
| 184 |
129 183
|
eleqtrd |
|- ( ( ph /\ n e. NN ) -> n e. dom ( (,) o. G ) ) |
| 185 |
|
fvco |
|- ( ( Fun ( (,) o. G ) /\ n e. dom ( (,) o. G ) ) -> ( ( vol o. ( (,) o. G ) ) ` n ) = ( vol ` ( ( (,) o. G ) ` n ) ) ) |
| 186 |
180 184 185
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( vol o. ( (,) o. G ) ) ` n ) = ( vol ` ( ( (,) o. G ) ` n ) ) ) |
| 187 |
168 177 186
|
3eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( vol o. ( (,) o. F ) ) ` n ) = ( ( vol o. ( (,) o. G ) ) ` n ) ) |
| 188 |
144 163 187
|
eqfnfvd |
|- ( ph -> ( vol o. ( (,) o. F ) ) = ( vol o. ( (,) o. G ) ) ) |
| 189 |
125 188
|
jca |
|- ( ph -> ( U. ran ( (,) o. F ) = U. ran ( (,) o. G ) /\ ( vol o. ( (,) o. F ) ) = ( vol o. ( (,) o. G ) ) ) ) |