| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval4lem2.a |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | ovolval4lem2.m |  |-  M = { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } | 
						
							| 3 |  | ovolval4lem2.g |  |-  G = ( n e. NN |-> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. ) | 
						
							| 4 |  | iftrue |  |-  ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) = ( 2nd ` ( f ` n ) ) ) | 
						
							| 5 | 4 | opeq2d |  |-  ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) | 
						
							| 7 |  | df-br |  |-  ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) <-> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) | 
						
							| 8 | 7 | biimpi |  |-  ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) | 
						
							| 10 | 6 9 | eqeltrd |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) | 
						
							| 11 |  | iffalse |  |-  ( -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) = ( 1st ` ( f ` n ) ) ) | 
						
							| 12 | 11 | opeq2d |  |-  ( -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. ) | 
						
							| 14 |  | elmapi |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> f : NN --> ( RR X. RR ) ) | 
						
							| 15 | 14 | ffvelcdmda |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( f ` n ) e. ( RR X. RR ) ) | 
						
							| 16 |  | xp1st |  |-  ( ( f ` n ) e. ( RR X. RR ) -> ( 1st ` ( f ` n ) ) e. RR ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) e. RR ) | 
						
							| 18 | 17 | leidd |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) <_ ( 1st ` ( f ` n ) ) ) | 
						
							| 19 |  | df-br |  |-  ( ( 1st ` ( f ` n ) ) <_ ( 1st ` ( f ` n ) ) <-> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) | 
						
							| 20 | 18 19 | sylib |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) | 
						
							| 22 | 13 21 | eqeltrd |  |-  ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) | 
						
							| 23 | 10 22 | pm2.61dan |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) | 
						
							| 24 |  | xp2nd |  |-  ( ( f ` n ) e. ( RR X. RR ) -> ( 2nd ` ( f ` n ) ) e. RR ) | 
						
							| 25 | 15 24 | syl |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 2nd ` ( f ` n ) ) e. RR ) | 
						
							| 26 | 25 17 | ifcld |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) e. RR ) | 
						
							| 27 |  | opelxpi |  |-  ( ( ( 1st ` ( f ` n ) ) e. RR /\ if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) e. RR ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( RR X. RR ) ) | 
						
							| 28 | 17 26 27 | syl2anc |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( RR X. RR ) ) | 
						
							| 29 | 23 28 | elind |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 30 | 29 3 | fmptd |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 31 |  | reex |  |-  RR e. _V | 
						
							| 32 | 31 31 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 33 | 32 | inex2 |  |-  ( <_ i^i ( RR X. RR ) ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( <_ i^i ( RR X. RR ) ) e. _V ) | 
						
							| 35 |  | nnex |  |-  NN e. _V | 
						
							| 36 | 35 | a1i |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> NN e. _V ) | 
						
							| 37 | 34 36 | elmapd |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> G : NN --> ( <_ i^i ( RR X. RR ) ) ) ) | 
						
							| 38 | 30 37 | mpbird |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 40 |  | simpr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> A C_ U. ran ( (,) o. f ) ) | 
						
							| 41 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 42 | 41 | a1i |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( RR X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 43 | 14 42 | fssd |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> f : NN --> ( RR* X. RR* ) ) | 
						
							| 44 |  | 2fveq3 |  |-  ( k = n -> ( 1st ` ( f ` k ) ) = ( 1st ` ( f ` n ) ) ) | 
						
							| 45 |  | 2fveq3 |  |-  ( k = n -> ( 2nd ` ( f ` k ) ) = ( 2nd ` ( f ` n ) ) ) | 
						
							| 46 | 44 45 | breq12d |  |-  ( k = n -> ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) <-> ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) ) | 
						
							| 47 | 46 | cbvrabv |  |-  { k e. NN | ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) } = { n e. NN | ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) } | 
						
							| 48 | 43 3 47 | ovolval4lem1 |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( U. ran ( (,) o. f ) = U. ran ( (,) o. G ) /\ ( vol o. ( (,) o. f ) ) = ( vol o. ( (,) o. G ) ) ) ) | 
						
							| 49 | 48 | simpld |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) | 
						
							| 51 | 40 50 | sseqtrd |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> A C_ U. ran ( (,) o. G ) ) | 
						
							| 52 | 51 | adantrr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> A C_ U. ran ( (,) o. G ) ) | 
						
							| 53 |  | simpr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) | 
						
							| 54 | 48 | simprd |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( vol o. ( (,) o. f ) ) = ( vol o. ( (,) o. G ) ) ) | 
						
							| 55 |  | coass |  |-  ( ( vol o. (,) ) o. f ) = ( vol o. ( (,) o. f ) ) | 
						
							| 56 | 55 | a1i |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( vol o. ( (,) o. f ) ) ) | 
						
							| 57 |  | coass |  |-  ( ( vol o. (,) ) o. G ) = ( vol o. ( (,) o. G ) ) | 
						
							| 58 | 57 | a1i |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. G ) = ( vol o. ( (,) o. G ) ) ) | 
						
							| 59 | 54 56 58 | 3eqtr4d |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. G ) ) | 
						
							| 60 | 59 | fveq2d |  |-  ( f e. ( ( RR X. RR ) ^m NN ) -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 62 | 53 61 | eqtrd |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 63 | 62 | adantrl |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 64 | 52 63 | jca |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) | 
						
							| 65 |  | coeq2 |  |-  ( g = G -> ( (,) o. g ) = ( (,) o. G ) ) | 
						
							| 66 | 65 | rneqd |  |-  ( g = G -> ran ( (,) o. g ) = ran ( (,) o. G ) ) | 
						
							| 67 | 66 | unieqd |  |-  ( g = G -> U. ran ( (,) o. g ) = U. ran ( (,) o. G ) ) | 
						
							| 68 | 67 | sseq2d |  |-  ( g = G -> ( A C_ U. ran ( (,) o. g ) <-> A C_ U. ran ( (,) o. G ) ) ) | 
						
							| 69 |  | coeq2 |  |-  ( g = G -> ( ( vol o. (,) ) o. g ) = ( ( vol o. (,) ) o. G ) ) | 
						
							| 70 | 69 | fveq2d |  |-  ( g = G -> ( sum^ ` ( ( vol o. (,) ) o. g ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( g = G -> ( y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) <-> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) | 
						
							| 72 | 68 71 | anbi12d |  |-  ( g = G -> ( ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) <-> ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) ) | 
						
							| 73 | 72 | rspcev |  |-  ( ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 74 | 39 64 73 | syl2anc |  |-  ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 75 | 74 | rexlimiva |  |-  ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 76 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 77 |  | mapss |  |-  ( ( ( RR X. RR ) e. _V /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) ) | 
						
							| 78 | 32 76 77 | mp2an |  |-  ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) | 
						
							| 79 | 78 | sseli |  |-  ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> g e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> g e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 81 |  | simpr |  |-  ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 82 |  | coeq2 |  |-  ( f = g -> ( (,) o. f ) = ( (,) o. g ) ) | 
						
							| 83 | 82 | rneqd |  |-  ( f = g -> ran ( (,) o. f ) = ran ( (,) o. g ) ) | 
						
							| 84 | 83 | unieqd |  |-  ( f = g -> U. ran ( (,) o. f ) = U. ran ( (,) o. g ) ) | 
						
							| 85 | 84 | sseq2d |  |-  ( f = g -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. g ) ) ) | 
						
							| 86 |  | coeq2 |  |-  ( f = g -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. g ) ) | 
						
							| 87 | 86 | fveq2d |  |-  ( f = g -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) | 
						
							| 88 | 87 | eqeq2d |  |-  ( f = g -> ( y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 89 | 85 88 | anbi12d |  |-  ( f = g -> ( ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) ) | 
						
							| 90 | 89 | rspcev |  |-  ( ( g e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 91 | 80 81 90 | syl2anc |  |-  ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 92 | 91 | rexlimiva |  |-  ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) | 
						
							| 93 | 75 92 | impbii |  |-  ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) | 
						
							| 94 | 93 | rabbii |  |-  { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } = { y e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) } | 
						
							| 95 | 2 94 | eqtri |  |-  M = { y e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) } | 
						
							| 96 | 1 95 | ovolval3 |  |-  ( ph -> ( vol* ` A ) = inf ( M , RR* , < ) ) |