Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval4lem2.a |
|- ( ph -> A C_ RR ) |
2 |
|
ovolval4lem2.m |
|- M = { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } |
3 |
|
ovolval4lem2.g |
|- G = ( n e. NN |-> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. ) |
4 |
|
iftrue |
|- ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) = ( 2nd ` ( f ` n ) ) ) |
5 |
4
|
opeq2d |
|- ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
6 |
5
|
adantl |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
7 |
|
df-br |
|- ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) <-> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) |
8 |
7
|
biimpi |
|- ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) |
9 |
8
|
adantl |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. e. <_ ) |
10 |
6 9
|
eqeltrd |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) |
11 |
|
iffalse |
|- ( -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) = ( 1st ` ( f ` n ) ) ) |
12 |
11
|
opeq2d |
|- ( -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. ) |
13 |
12
|
adantl |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. = <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. ) |
14 |
|
elmapi |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> f : NN --> ( RR X. RR ) ) |
15 |
14
|
ffvelrnda |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( f ` n ) e. ( RR X. RR ) ) |
16 |
|
xp1st |
|- ( ( f ` n ) e. ( RR X. RR ) -> ( 1st ` ( f ` n ) ) e. RR ) |
17 |
15 16
|
syl |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) e. RR ) |
18 |
17
|
leidd |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) <_ ( 1st ` ( f ` n ) ) ) |
19 |
|
df-br |
|- ( ( 1st ` ( f ` n ) ) <_ ( 1st ` ( f ` n ) ) <-> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) |
20 |
18 19
|
sylib |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) |
21 |
20
|
adantr |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) >. e. <_ ) |
22 |
13 21
|
eqeltrd |
|- ( ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) /\ -. ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) |
23 |
10 22
|
pm2.61dan |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. <_ ) |
24 |
|
xp2nd |
|- ( ( f ` n ) e. ( RR X. RR ) -> ( 2nd ` ( f ` n ) ) e. RR ) |
25 |
15 24
|
syl |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> ( 2nd ` ( f ` n ) ) e. RR ) |
26 |
25 17
|
ifcld |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) e. RR ) |
27 |
|
opelxpi |
|- ( ( ( 1st ` ( f ` n ) ) e. RR /\ if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) e. RR ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( RR X. RR ) ) |
28 |
17 26 27
|
syl2anc |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( RR X. RR ) ) |
29 |
23 28
|
elind |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ n e. NN ) -> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
30 |
29 3
|
fmptd |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
31 |
|
reex |
|- RR e. _V |
32 |
31 31
|
xpex |
|- ( RR X. RR ) e. _V |
33 |
32
|
inex2 |
|- ( <_ i^i ( RR X. RR ) ) e. _V |
34 |
33
|
a1i |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( <_ i^i ( RR X. RR ) ) e. _V ) |
35 |
|
nnex |
|- NN e. _V |
36 |
35
|
a1i |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> NN e. _V ) |
37 |
34 36
|
elmapd |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> G : NN --> ( <_ i^i ( RR X. RR ) ) ) ) |
38 |
30 37
|
mpbird |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
39 |
38
|
adantr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
40 |
|
simpr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> A C_ U. ran ( (,) o. f ) ) |
41 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
42 |
41
|
a1i |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
43 |
14 42
|
fssd |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> f : NN --> ( RR* X. RR* ) ) |
44 |
|
2fveq3 |
|- ( k = n -> ( 1st ` ( f ` k ) ) = ( 1st ` ( f ` n ) ) ) |
45 |
|
2fveq3 |
|- ( k = n -> ( 2nd ` ( f ` k ) ) = ( 2nd ` ( f ` n ) ) ) |
46 |
44 45
|
breq12d |
|- ( k = n -> ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) <-> ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) ) |
47 |
46
|
cbvrabv |
|- { k e. NN | ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) } = { n e. NN | ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) } |
48 |
43 3 47
|
ovolval4lem1 |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( U. ran ( (,) o. f ) = U. ran ( (,) o. G ) /\ ( vol o. ( (,) o. f ) ) = ( vol o. ( (,) o. G ) ) ) ) |
49 |
48
|
simpld |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) |
50 |
49
|
adantr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> U. ran ( (,) o. f ) = U. ran ( (,) o. G ) ) |
51 |
40 50
|
sseqtrd |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ A C_ U. ran ( (,) o. f ) ) -> A C_ U. ran ( (,) o. G ) ) |
52 |
51
|
adantrr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> A C_ U. ran ( (,) o. G ) ) |
53 |
|
simpr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) |
54 |
48
|
simprd |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( vol o. ( (,) o. f ) ) = ( vol o. ( (,) o. G ) ) ) |
55 |
|
coass |
|- ( ( vol o. (,) ) o. f ) = ( vol o. ( (,) o. f ) ) |
56 |
55
|
a1i |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( vol o. ( (,) o. f ) ) ) |
57 |
|
coass |
|- ( ( vol o. (,) ) o. G ) = ( vol o. ( (,) o. G ) ) |
58 |
57
|
a1i |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. G ) = ( vol o. ( (,) o. G ) ) ) |
59 |
54 56 58
|
3eqtr4d |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. G ) ) |
60 |
59
|
fveq2d |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
61 |
60
|
adantr |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
62 |
53 61
|
eqtrd |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
63 |
62
|
adantrl |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
64 |
52 63
|
jca |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
65 |
|
coeq2 |
|- ( g = G -> ( (,) o. g ) = ( (,) o. G ) ) |
66 |
65
|
rneqd |
|- ( g = G -> ran ( (,) o. g ) = ran ( (,) o. G ) ) |
67 |
66
|
unieqd |
|- ( g = G -> U. ran ( (,) o. g ) = U. ran ( (,) o. G ) ) |
68 |
67
|
sseq2d |
|- ( g = G -> ( A C_ U. ran ( (,) o. g ) <-> A C_ U. ran ( (,) o. G ) ) ) |
69 |
|
coeq2 |
|- ( g = G -> ( ( vol o. (,) ) o. g ) = ( ( vol o. (,) ) o. G ) ) |
70 |
69
|
fveq2d |
|- ( g = G -> ( sum^ ` ( ( vol o. (,) ) o. g ) ) = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) |
71 |
70
|
eqeq2d |
|- ( g = G -> ( y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) <-> y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) |
72 |
68 71
|
anbi12d |
|- ( g = G -> ( ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) <-> ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) ) |
73 |
72
|
rspcev |
|- ( ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. G ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. G ) ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
74 |
39 64 73
|
syl2anc |
|- ( ( f e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
75 |
74
|
rexlimiva |
|- ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) -> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
76 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
77 |
|
mapss |
|- ( ( ( RR X. RR ) e. _V /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) ) |
78 |
32 76 77
|
mp2an |
|- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) |
79 |
78
|
sseli |
|- ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> g e. ( ( RR X. RR ) ^m NN ) ) |
80 |
79
|
adantr |
|- ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> g e. ( ( RR X. RR ) ^m NN ) ) |
81 |
|
simpr |
|- ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
82 |
|
coeq2 |
|- ( f = g -> ( (,) o. f ) = ( (,) o. g ) ) |
83 |
82
|
rneqd |
|- ( f = g -> ran ( (,) o. f ) = ran ( (,) o. g ) ) |
84 |
83
|
unieqd |
|- ( f = g -> U. ran ( (,) o. f ) = U. ran ( (,) o. g ) ) |
85 |
84
|
sseq2d |
|- ( f = g -> ( A C_ U. ran ( (,) o. f ) <-> A C_ U. ran ( (,) o. g ) ) ) |
86 |
|
coeq2 |
|- ( f = g -> ( ( vol o. (,) ) o. f ) = ( ( vol o. (,) ) o. g ) ) |
87 |
86
|
fveq2d |
|- ( f = g -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) |
88 |
87
|
eqeq2d |
|- ( f = g -> ( y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
89 |
85 88
|
anbi12d |
|- ( f = g -> ( ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) ) |
90 |
89
|
rspcev |
|- ( ( g e. ( ( RR X. RR ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
91 |
80 81 90
|
syl2anc |
|- ( ( g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
92 |
91
|
rexlimiva |
|- ( E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) -> E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) ) |
93 |
75 92
|
impbii |
|- ( E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) ) |
94 |
93
|
rabbii |
|- { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } = { y e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) } |
95 |
2 94
|
eqtri |
|- M = { y e. RR* | E. g e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. g ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. g ) ) ) } |
96 |
1 95
|
ovolval3 |
|- ( ph -> ( vol* ` A ) = inf ( M , RR* , < ) ) |