Metamath Proof Explorer


Theorem ovolval4

Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 , but here f may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval4.a
|- ( ph -> A C_ RR )
ovolval4.m
|- M = { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) }
Assertion ovolval4
|- ( ph -> ( vol* ` A ) = inf ( M , RR* , < ) )

Proof

Step Hyp Ref Expression
1 ovolval4.a
 |-  ( ph -> A C_ RR )
2 ovolval4.m
 |-  M = { y e. RR* | E. f e. ( ( RR X. RR ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) }
3 2fveq3
 |-  ( k = n -> ( 1st ` ( f ` k ) ) = ( 1st ` ( f ` n ) ) )
4 2fveq3
 |-  ( k = n -> ( 2nd ` ( f ` k ) ) = ( 2nd ` ( f ` n ) ) )
5 3 4 breq12d
 |-  ( k = n -> ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) <-> ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) )
6 5 4 3 ifbieq12d
 |-  ( k = n -> if ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) , ( 2nd ` ( f ` k ) ) , ( 1st ` ( f ` k ) ) ) = if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) )
7 3 6 opeq12d
 |-  ( k = n -> <. ( 1st ` ( f ` k ) ) , if ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) , ( 2nd ` ( f ` k ) ) , ( 1st ` ( f ` k ) ) ) >. = <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. )
8 7 cbvmptv
 |-  ( k e. NN |-> <. ( 1st ` ( f ` k ) ) , if ( ( 1st ` ( f ` k ) ) <_ ( 2nd ` ( f ` k ) ) , ( 2nd ` ( f ` k ) ) , ( 1st ` ( f ` k ) ) ) >. ) = ( n e. NN |-> <. ( 1st ` ( f ` n ) ) , if ( ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) , ( 1st ` ( f ` n ) ) ) >. )
9 1 2 8 ovolval4lem2
 |-  ( ph -> ( vol* ` A ) = inf ( M , RR* , < ) )