Metamath Proof Explorer


Theorem ovnovollem1

Description: if F is a cover of B in RR , then I is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem1.a φ A V
ovnovollem1.f φ F 2
ovnovollem1.i I = j A F j
ovnovollem1.s φ B ran . F
ovnovollem1.b φ B W
ovnovollem1.z φ Z = sum^ vol . F
Assertion ovnovollem1 φ i 2 A B A j k A . i j k Z = sum^ j k A vol . i j k

Proof

Step Hyp Ref Expression
1 ovnovollem1.a φ A V
2 ovnovollem1.f φ F 2
3 ovnovollem1.i I = j A F j
4 ovnovollem1.s φ B ran . F
5 ovnovollem1.b φ B W
6 ovnovollem1.z φ Z = sum^ vol . F
7 eqidd φ j A F j = A F j
8 1 adantr φ j A V
9 elmapi F 2 F : 2
10 2 9 syl φ F : 2
11 10 ffvelrnda φ j F j 2
12 fsng A V F j 2 A F j : A F j A F j = A F j
13 8 11 12 syl2anc φ j A F j : A F j A F j = A F j
14 7 13 mpbird φ j A F j : A F j
15 11 snssd φ j F j 2
16 14 15 fssd φ j A F j : A 2
17 reex V
18 17 17 xpex 2 V
19 18 a1i φ j 2 V
20 snex A V
21 20 a1i φ j A V
22 19 21 elmapd φ j A F j 2 A A F j : A 2
23 16 22 mpbird φ j A F j 2 A
24 23 3 fmptd φ I : 2 A
25 ovexd φ 2 A V
26 nnex V
27 26 a1i φ V
28 25 27 elmapd φ I 2 A I : 2 A
29 24 28 mpbird φ I 2 A
30 icof . : * × * 𝒫 *
31 30 a1i φ . : * × * 𝒫 *
32 rexpssxrxp 2 * × *
33 32 a1i φ 2 * × *
34 31 33 10 fcoss φ . F : 𝒫 *
35 34 ffnd φ . F Fn
36 fniunfv . F Fn j . F j = ran . F
37 35 36 syl φ j . F j = ran . F
38 37 eqcomd φ ran . F = j . F j
39 4 38 sseqtrd φ B j . F j
40 fvex . F j V
41 26 40 iunex j . F j V
42 41 a1i φ j . F j V
43 20 a1i φ A V
44 1 snn0d φ A
45 5 42 43 44 mapss2 φ B j . F j B A j . F j A
46 39 45 mpbid φ B A j . F j A
47 nfv j φ
48 fvexd φ j . F j V
49 47 27 48 1 iunmapsn φ j . F j A = j . F j A
50 49 eqcomd φ j . F j A = j . F j A
51 elmapfun F 2 Fun F
52 2 51 syl φ Fun F
53 52 adantr φ j Fun F
54 simpr φ j j
55 10 fdmd φ dom F =
56 55 eqcomd φ = dom F
57 56 adantr φ j = dom F
58 54 57 eleqtrd φ j j dom F
59 fvco Fun F j dom F . F j = . F j
60 53 58 59 syl2anc φ j . F j = . F j
61 60 iuneq2dv φ j . F j = j . F j
62 61 oveq1d φ j . F j A = j . F j A
63 14 ffund φ j Fun A F j
64 id j j
65 snex A F j V
66 65 a1i j A F j V
67 3 fvmpt2 j A F j V I j = A F j
68 64 66 67 syl2anc j I j = A F j
69 68 adantl φ j I j = A F j
70 69 funeqd φ j Fun I j Fun A F j
71 63 70 mpbird φ j Fun I j
72 71 adantr φ j k A Fun I j
73 simpr φ j k A k A
74 69 dmeqd φ j dom I j = dom A F j
75 14 fdmd φ j dom A F j = A
76 74 75 eqtrd φ j dom I j = A
77 76 eleq2d φ j k dom I j k A
78 77 adantr φ j k A k dom I j k A
79 73 78 mpbird φ j k A k dom I j
80 fvco Fun I j k dom I j . I j k = . I j k
81 72 79 80 syl2anc φ j k A . I j k = . I j k
82 68 fveq1d j I j k = A F j k
83 82 ad2antlr φ j k A I j k = A F j k
84 elsni k A k = A
85 84 fveq2d k A A F j k = A F j A
86 85 adantl φ j k A A F j k = A F j A
87 fvexd φ F j V
88 fvsng A V F j V A F j A = F j
89 1 87 88 syl2anc φ A F j A = F j
90 89 ad2antrr φ j k A A F j A = F j
91 83 86 90 3eqtrd φ j k A I j k = F j
92 91 fveq2d φ j k A . I j k = . F j
93 eqidd φ j k A . F j = . F j
94 81 92 93 3eqtrd φ j k A . I j k = . F j
95 94 ixpeq2dva φ j k A . I j k = k A . F j
96 fvex . F j V
97 20 96 ixpconst k A . F j = . F j A
98 97 a1i φ j k A . F j = . F j A
99 95 98 eqtrd φ j k A . I j k = . F j A
100 99 iuneq2dv φ j k A . I j k = j . F j A
101 50 62 100 3eqtr4d φ j . F j A = j k A . I j k
102 46 101 sseqtrd φ B A j k A . I j k
103 nfcv _ j F
104 ressxr *
105 xpss2 * 2 × *
106 104 105 ax-mp 2 × *
107 106 a1i φ 2 × *
108 10 107 fssd φ F : × *
109 103 108 volicofmpt φ vol . F = j vol 1 st F j 2 nd F j
110 68 coeq2d j . I j = . A F j
111 110 fveq1d j . I j A = . A F j A
112 111 adantl φ j . I j A = . A F j A
113 snidg A V A A
114 1 113 syl φ A A
115 dmsnopg F j V dom A F j = A
116 87 115 syl φ dom A F j = A
117 114 116 eleqtrrd φ A dom A F j
118 117 adantr φ j A dom A F j
119 fvco Fun A F j A dom A F j . A F j A = . A F j A
120 63 118 119 syl2anc φ j . A F j A = . A F j A
121 fvexd φ j F j V
122 8 121 88 syl2anc φ j A F j A = F j
123 1st2nd2 F j 2 F j = 1 st F j 2 nd F j
124 11 123 syl φ j F j = 1 st F j 2 nd F j
125 122 124 eqtrd φ j A F j A = 1 st F j 2 nd F j
126 125 fveq2d φ j . A F j A = . 1 st F j 2 nd F j
127 df-ov 1 st F j 2 nd F j = . 1 st F j 2 nd F j
128 127 eqcomi . 1 st F j 2 nd F j = 1 st F j 2 nd F j
129 128 a1i φ j . 1 st F j 2 nd F j = 1 st F j 2 nd F j
130 126 129 eqtrd φ j . A F j A = 1 st F j 2 nd F j
131 112 120 130 3eqtrd φ j . I j A = 1 st F j 2 nd F j
132 131 fveq2d φ j vol . I j A = vol 1 st F j 2 nd F j
133 xp1st F j 2 1 st F j
134 11 133 syl φ j 1 st F j
135 xp2nd F j 2 2 nd F j
136 11 135 syl φ j 2 nd F j
137 volicore 1 st F j 2 nd F j vol 1 st F j 2 nd F j
138 134 136 137 syl2anc φ j vol 1 st F j 2 nd F j
139 132 138 eqeltrd φ j vol . I j A
140 139 recnd φ j vol . I j A
141 2fveq3 k = A vol . I j k = vol . I j A
142 141 prodsn A V vol . I j A k A vol . I j k = vol . I j A
143 8 140 142 syl2anc φ j k A vol . I j k = vol . I j A
144 143 132 eqtr2d φ j vol 1 st F j 2 nd F j = k A vol . I j k
145 144 mpteq2dva φ j vol 1 st F j 2 nd F j = j k A vol . I j k
146 109 145 eqtrd φ vol . F = j k A vol . I j k
147 146 fveq2d φ sum^ vol . F = sum^ j k A vol . I j k
148 6 147 eqtrd φ Z = sum^ j k A vol . I j k
149 102 148 jca φ B A j k A . I j k Z = sum^ j k A vol . I j k
150 fveq1 i = I i j = I j
151 150 coeq2d i = I . i j = . I j
152 151 fveq1d i = I . i j k = . I j k
153 152 ixpeq2dv i = I k A . i j k = k A . I j k
154 153 iuneq2d i = I j k A . i j k = j k A . I j k
155 154 sseq2d i = I B A j k A . i j k B A j k A . I j k
156 simpl i = I k A i = I
157 156 fveq1d i = I k A i j = I j
158 157 coeq2d i = I k A . i j = . I j
159 158 fveq1d i = I k A . i j k = . I j k
160 159 fveq2d i = I k A vol . i j k = vol . I j k
161 160 prodeq2dv i = I k A vol . i j k = k A vol . I j k
162 161 mpteq2dv i = I j k A vol . i j k = j k A vol . I j k
163 162 fveq2d i = I sum^ j k A vol . i j k = sum^ j k A vol . I j k
164 163 eqeq2d i = I Z = sum^ j k A vol . i j k Z = sum^ j k A vol . I j k
165 155 164 anbi12d i = I B A j k A . i j k Z = sum^ j k A vol . i j k B A j k A . I j k Z = sum^ j k A vol . I j k
166 165 rspcev I 2 A B A j k A . I j k Z = sum^ j k A vol . I j k i 2 A B A j k A . i j k Z = sum^ j k A vol . i j k
167 29 149 166 syl2anc φ i 2 A B A j k A . i j k Z = sum^ j k A vol . i j k