Metamath Proof Explorer


Theorem volicofmpt

Description: ( ( vol o. [,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses volicofmpt.1 _xF
volicofmpt.2 φF:A×*
Assertion volicofmpt φvol.F=xAvol1stFx2ndFx

Proof

Step Hyp Ref Expression
1 volicofmpt.1 _xF
2 volicofmpt.2 φF:A×*
3 nfcv _xA
4 nfcv _xvol.
5 4 1 nfco _xvol.F
6 2 volicoff φvol.F:A0+∞
7 3 5 6 feqmptdf φvol.F=xAvol.Fx
8 ressxr *
9 xpss1 *×**×*
10 8 9 ax-mp ×**×*
11 10 a1i φ×**×*
12 2 11 fssd φF:A*×*
13 12 adantr φxAF:A*×*
14 simpr φxAxA
15 13 14 fvvolicof φxAvol.Fx=vol1stFx2ndFx
16 15 mpteq2dva φxAvol.Fx=xAvol1stFx2ndFx
17 7 16 eqtrd φvol.F=xAvol1stFx2ndFx