| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volicofmpt.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | volicofmpt.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ* ) ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 ( vol  ∘  [,) ) | 
						
							| 5 | 4 1 | nfco | ⊢ Ⅎ 𝑥 ( ( vol  ∘  [,) )  ∘  𝐹 ) | 
						
							| 6 | 2 | volicoff | ⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 7 | 3 5 6 | feqmptdf | ⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( 𝑥  ∈  𝐴  ↦  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 ) ) ) | 
						
							| 8 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 9 |  | xpss1 | ⊢ ( ℝ  ⊆  ℝ*  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 12 | 2 11 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ ( ℝ*  ×  ℝ* ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 15 | 13 14 | fvvolicof | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 )  =  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 16 | 15 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 17 | 7 16 | eqtrd | ⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( 𝑥  ∈  𝐴  ↦  ( vol ‘ ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |