| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volicoff.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ* ) ) | 
						
							| 2 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝜑  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | icof | ⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* ) | 
						
							| 6 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 7 |  | xpss1 | ⊢ ( ℝ  ⊆  ℝ*  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( ℝ  ×  ℝ* )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 10 | 5 9 1 | fcoss | ⊢ ( 𝜑  →  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ 𝒫  ℝ* ) | 
						
							| 11 | 10 | ffnd | ⊢ ( 𝜑  →  ( [,)  ∘  𝐹 )  Fn  𝐴 ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐹 : 𝐴 ⟶ ( ℝ  ×  ℝ* ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 14 | 12 13 | fvovco | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ* ) ) | 
						
							| 16 |  | xp1st | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ* )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 18 |  | xp2nd | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( ℝ  ×  ℝ* )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 19 | 15 18 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 20 |  | icombl | ⊢ ( ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  dom  vol ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 1st  ‘ ( 𝐹 ‘ 𝑥 ) ) [,) ( 2nd  ‘ ( 𝐹 ‘ 𝑥 ) ) )  ∈  dom  vol ) | 
						
							| 22 | 14 21 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol ) | 
						
							| 23 | 22 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol ) | 
						
							| 24 |  | fnfvrnss | ⊢ ( ( ( [,)  ∘  𝐹 )  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( ( [,)  ∘  𝐹 ) ‘ 𝑥 )  ∈  dom  vol )  →  ran  ( [,)  ∘  𝐹 )  ⊆  dom  vol ) | 
						
							| 25 | 11 23 24 | syl2anc | ⊢ ( 𝜑  →  ran  ( [,)  ∘  𝐹 )  ⊆  dom  vol ) | 
						
							| 26 |  | ffrn | ⊢ ( ( [,)  ∘  𝐹 ) : 𝐴 ⟶ 𝒫  ℝ*  →  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ ran  ( [,)  ∘  𝐹 ) ) | 
						
							| 27 | 10 26 | syl | ⊢ ( 𝜑  →  ( [,)  ∘  𝐹 ) : 𝐴 ⟶ ran  ( [,)  ∘  𝐹 ) ) | 
						
							| 28 | 3 25 27 | fcoss | ⊢ ( 𝜑  →  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 29 |  | coass | ⊢ ( ( vol  ∘  [,) )  ∘  𝐹 )  =  ( vol  ∘  ( [,)  ∘  𝐹 ) ) | 
						
							| 30 | 29 | feq1i | ⊢ ( ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ )  ↔  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ )  ↔  ( vol  ∘  ( [,)  ∘  𝐹 ) ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 32 | 28 31 | mpbird | ⊢ ( 𝜑  →  ( ( vol  ∘  [,) )  ∘  𝐹 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |