Metamath Proof Explorer


Theorem volicoff

Description: ( ( vol o. [,) ) o. F ) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis volicoff.1 φF:A×*
Assertion volicoff φvol.F:A0+∞

Proof

Step Hyp Ref Expression
1 volicoff.1 φF:A×*
2 volf vol:domvol0+∞
3 2 a1i φvol:domvol0+∞
4 icof .:*×*𝒫*
5 4 a1i φ.:*×*𝒫*
6 ressxr *
7 xpss1 *×**×*
8 6 7 ax-mp ×**×*
9 8 a1i φ×**×*
10 5 9 1 fcoss φ.F:A𝒫*
11 10 ffnd φ.FFnA
12 1 adantr φxAF:A×*
13 simpr φxAxA
14 12 13 fvovco φxA.Fx=1stFx2ndFx
15 1 ffvelcdmda φxAFx×*
16 xp1st Fx×*1stFx
17 15 16 syl φxA1stFx
18 xp2nd Fx×*2ndFx*
19 15 18 syl φxA2ndFx*
20 icombl 1stFx2ndFx*1stFx2ndFxdomvol
21 17 19 20 syl2anc φxA1stFx2ndFxdomvol
22 14 21 eqeltrd φxA.Fxdomvol
23 22 ralrimiva φxA.Fxdomvol
24 fnfvrnss .FFnAxA.Fxdomvolran.Fdomvol
25 11 23 24 syl2anc φran.Fdomvol
26 ffrn .F:A𝒫*.F:Aran.F
27 10 26 syl φ.F:Aran.F
28 3 25 27 fcoss φvol.F:A0+∞
29 coass vol.F=vol.F
30 29 feq1i vol.F:A0+∞vol.F:A0+∞
31 30 a1i φvol.F:A0+∞vol.F:A0+∞
32 28 31 mpbird φvol.F:A0+∞