| Step | Hyp | Ref | Expression | 
						
							| 1 |  | volicoff.1 |  |-  ( ph -> F : A --> ( RR X. RR* ) ) | 
						
							| 2 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 4 |  | icof |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 5 | 4 | a1i |  |-  ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) | 
						
							| 6 |  | ressxr |  |-  RR C_ RR* | 
						
							| 7 |  | xpss1 |  |-  ( RR C_ RR* -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( RR X. RR* ) C_ ( RR* X. RR* ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( RR X. RR* ) C_ ( RR* X. RR* ) ) | 
						
							| 10 | 5 9 1 | fcoss |  |-  ( ph -> ( [,) o. F ) : A --> ~P RR* ) | 
						
							| 11 | 10 | ffnd |  |-  ( ph -> ( [,) o. F ) Fn A ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> F : A --> ( RR X. RR* ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 14 | 12 13 | fvovco |  |-  ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) = ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) | 
						
							| 15 | 1 | ffvelcdmda |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. ( RR X. RR* ) ) | 
						
							| 16 |  | xp1st |  |-  ( ( F ` x ) e. ( RR X. RR* ) -> ( 1st ` ( F ` x ) ) e. RR ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ x e. A ) -> ( 1st ` ( F ` x ) ) e. RR ) | 
						
							| 18 |  | xp2nd |  |-  ( ( F ` x ) e. ( RR X. RR* ) -> ( 2nd ` ( F ` x ) ) e. RR* ) | 
						
							| 19 | 15 18 | syl |  |-  ( ( ph /\ x e. A ) -> ( 2nd ` ( F ` x ) ) e. RR* ) | 
						
							| 20 |  | icombl |  |-  ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR* ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( ph /\ x e. A ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) | 
						
							| 22 | 14 21 | eqeltrd |  |-  ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) e. dom vol ) | 
						
							| 23 | 22 | ralrimiva |  |-  ( ph -> A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) | 
						
							| 24 |  | fnfvrnss |  |-  ( ( ( [,) o. F ) Fn A /\ A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) -> ran ( [,) o. F ) C_ dom vol ) | 
						
							| 25 | 11 23 24 | syl2anc |  |-  ( ph -> ran ( [,) o. F ) C_ dom vol ) | 
						
							| 26 |  | ffrn |  |-  ( ( [,) o. F ) : A --> ~P RR* -> ( [,) o. F ) : A --> ran ( [,) o. F ) ) | 
						
							| 27 | 10 26 | syl |  |-  ( ph -> ( [,) o. F ) : A --> ran ( [,) o. F ) ) | 
						
							| 28 | 3 25 27 | fcoss |  |-  ( ph -> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) | 
						
							| 29 |  | coass |  |-  ( ( vol o. [,) ) o. F ) = ( vol o. ( [,) o. F ) ) | 
						
							| 30 | 29 | feq1i |  |-  ( ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) <-> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> ( ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) <-> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) ) | 
						
							| 32 | 28 31 | mpbird |  |-  ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) ) |