| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliooicof.1 |  |-  ( ph -> F : A --> ( RR X. RR ) ) | 
						
							| 2 |  | volioof |  |-  ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) | 
						
							| 3 | 2 | a1i |  |-  ( ph -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) | 
						
							| 4 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( RR* X. RR* ) ) | 
						
							| 6 | 3 5 1 | fcoss |  |-  ( ph -> ( ( vol o. (,) ) o. F ) : A --> ( 0 [,] +oo ) ) | 
						
							| 7 | 6 | ffnd |  |-  ( ph -> ( ( vol o. (,) ) o. F ) Fn A ) | 
						
							| 8 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 10 |  | icof |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 11 | 10 | a1i |  |-  ( ph -> [,) : ( RR* X. RR* ) --> ~P RR* ) | 
						
							| 12 | 11 5 1 | fcoss |  |-  ( ph -> ( [,) o. F ) : A --> ~P RR* ) | 
						
							| 13 | 12 | ffnd |  |-  ( ph -> ( [,) o. F ) Fn A ) | 
						
							| 14 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> F : A --> ( RR X. RR ) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 16 | 14 15 | fvovco |  |-  ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) = ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) | 
						
							| 17 | 1 | ffvelcdmda |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. ( RR X. RR ) ) | 
						
							| 18 |  | xp1st |  |-  ( ( F ` x ) e. ( RR X. RR ) -> ( 1st ` ( F ` x ) ) e. RR ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ph /\ x e. A ) -> ( 1st ` ( F ` x ) ) e. RR ) | 
						
							| 20 |  | xp2nd |  |-  ( ( F ` x ) e. ( RR X. RR ) -> ( 2nd ` ( F ` x ) ) e. RR ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( ph /\ x e. A ) -> ( 2nd ` ( F ` x ) ) e. RR ) | 
						
							| 22 | 21 | rexrd |  |-  ( ( ph /\ x e. A ) -> ( 2nd ` ( F ` x ) ) e. RR* ) | 
						
							| 23 |  | icombl |  |-  ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR* ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) | 
						
							| 24 | 19 22 23 | syl2anc |  |-  ( ( ph /\ x e. A ) -> ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) e. dom vol ) | 
						
							| 25 | 16 24 | eqeltrd |  |-  ( ( ph /\ x e. A ) -> ( ( [,) o. F ) ` x ) e. dom vol ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( ph -> A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) | 
						
							| 27 | 13 26 | jca |  |-  ( ph -> ( ( [,) o. F ) Fn A /\ A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) ) | 
						
							| 28 |  | ffnfv |  |-  ( ( [,) o. F ) : A --> dom vol <-> ( ( [,) o. F ) Fn A /\ A. x e. A ( ( [,) o. F ) ` x ) e. dom vol ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ph -> ( [,) o. F ) : A --> dom vol ) | 
						
							| 30 |  | fco |  |-  ( ( vol : dom vol --> ( 0 [,] +oo ) /\ ( [,) o. F ) : A --> dom vol ) -> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) | 
						
							| 31 | 9 29 30 | syl2anc |  |-  ( ph -> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) | 
						
							| 32 |  | coass |  |-  ( ( vol o. [,) ) o. F ) = ( vol o. ( [,) o. F ) ) | 
						
							| 33 | 32 | a1i |  |-  ( ph -> ( ( vol o. [,) ) o. F ) = ( vol o. ( [,) o. F ) ) ) | 
						
							| 34 | 33 | feq1d |  |-  ( ph -> ( ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) <-> ( vol o. ( [,) o. F ) ) : A --> ( 0 [,] +oo ) ) ) | 
						
							| 35 | 31 34 | mpbird |  |-  ( ph -> ( ( vol o. [,) ) o. F ) : A --> ( 0 [,] +oo ) ) | 
						
							| 36 | 35 | ffnd |  |-  ( ph -> ( ( vol o. [,) ) o. F ) Fn A ) | 
						
							| 37 | 19 21 | voliooico |  |-  ( ( ph /\ x e. A ) -> ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) | 
						
							| 38 | 1 5 | fssd |  |-  ( ph -> F : A --> ( RR* X. RR* ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ x e. A ) -> F : A --> ( RR* X. RR* ) ) | 
						
							| 40 | 39 15 | fvvolioof |  |-  ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) | 
						
							| 41 | 39 15 | fvvolicof |  |-  ( ( ph /\ x e. A ) -> ( ( ( vol o. [,) ) o. F ) ` x ) = ( vol ` ( ( 1st ` ( F ` x ) ) [,) ( 2nd ` ( F ` x ) ) ) ) ) | 
						
							| 42 | 37 40 41 | 3eqtr4d |  |-  ( ( ph /\ x e. A ) -> ( ( ( vol o. (,) ) o. F ) ` x ) = ( ( ( vol o. [,) ) o. F ) ` x ) ) | 
						
							| 43 | 7 36 42 | eqfnfvd |  |-  ( ph -> ( ( vol o. (,) ) o. F ) = ( ( vol o. [,) ) o. F ) ) |