| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliooico.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | voliooico.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | iftrue |  |-  ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( ph /\ A <_ B ) /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 5 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 6 | 5 | subidd |  |-  ( ph -> ( B - B ) = 0 ) | 
						
							| 7 | 6 | eqcomd |  |-  ( ph -> 0 = ( B - B ) ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> 0 = ( B - B ) ) | 
						
							| 9 |  | iffalse |  |-  ( -. A < B -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 11 |  | simpll |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> ph ) | 
						
							| 12 | 11 1 | syl |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A e. RR ) | 
						
							| 13 | 11 2 | syl |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> B e. RR ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ A <_ B ) -> A <_ B ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A <_ B ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> -. A < B ) | 
						
							| 17 | 12 13 15 16 | lenlteq |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> A = B ) | 
						
							| 18 |  | oveq2 |  |-  ( A = B -> ( B - A ) = ( B - B ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ A = B ) -> ( B - A ) = ( B - B ) ) | 
						
							| 20 | 11 17 19 | syl2anc |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> ( B - A ) = ( B - B ) ) | 
						
							| 21 | 8 10 20 | 3eqtr4d |  |-  ( ( ( ph /\ A <_ B ) /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 22 | 4 21 | pm2.61dan |  |-  ( ( ph /\ A <_ B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( ph /\ A <_ B ) -> ( B - A ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 24 | 1 | adantr |  |-  ( ( ph /\ A <_ B ) -> A e. RR ) | 
						
							| 25 | 2 | adantr |  |-  ( ( ph /\ A <_ B ) -> B e. RR ) | 
						
							| 26 |  | volioo |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 27 | 24 25 14 26 | syl3anc |  |-  ( ( ph /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) | 
						
							| 28 |  | volico |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 29 | 1 2 28 | syl2anc |  |-  ( ph -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 31 | 23 27 30 | 3eqtr4d |  |-  ( ( ph /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) | 
						
							| 32 |  | simpl |  |-  ( ( ph /\ -. A <_ B ) -> ph ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ -. A <_ B ) -> -. A <_ B ) | 
						
							| 34 | 32 2 | syl |  |-  ( ( ph /\ -. A <_ B ) -> B e. RR ) | 
						
							| 35 | 32 1 | syl |  |-  ( ( ph /\ -. A <_ B ) -> A e. RR ) | 
						
							| 36 | 34 35 | ltnled |  |-  ( ( ph /\ -. A <_ B ) -> ( B < A <-> -. A <_ B ) ) | 
						
							| 37 | 33 36 | mpbird |  |-  ( ( ph /\ -. A <_ B ) -> B < A ) | 
						
							| 38 | 2 | adantr |  |-  ( ( ph /\ B < A ) -> B e. RR ) | 
						
							| 39 | 1 | adantr |  |-  ( ( ph /\ B < A ) -> A e. RR ) | 
						
							| 40 |  | simpr |  |-  ( ( ph /\ B < A ) -> B < A ) | 
						
							| 41 | 38 39 40 | ltled |  |-  ( ( ph /\ B < A ) -> B <_ A ) | 
						
							| 42 | 39 | rexrd |  |-  ( ( ph /\ B < A ) -> A e. RR* ) | 
						
							| 43 | 38 | rexrd |  |-  ( ( ph /\ B < A ) -> B e. RR* ) | 
						
							| 44 |  | ioo0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 45 | 42 43 44 | syl2anc |  |-  ( ( ph /\ B < A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) | 
						
							| 46 | 41 45 | mpbird |  |-  ( ( ph /\ B < A ) -> ( A (,) B ) = (/) ) | 
						
							| 47 |  | ico0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) | 
						
							| 48 | 42 43 47 | syl2anc |  |-  ( ( ph /\ B < A ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) | 
						
							| 49 | 41 48 | mpbird |  |-  ( ( ph /\ B < A ) -> ( A [,) B ) = (/) ) | 
						
							| 50 | 46 49 | eqtr4d |  |-  ( ( ph /\ B < A ) -> ( A (,) B ) = ( A [,) B ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ph /\ B < A ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) | 
						
							| 52 | 32 37 51 | syl2anc |  |-  ( ( ph /\ -. A <_ B ) -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) | 
						
							| 53 | 31 52 | pm2.61dan |  |-  ( ph -> ( vol ` ( A (,) B ) ) = ( vol ` ( A [,) B ) ) ) |